

FLOODING ATTACK DETECTION AND MITIGATION

IN SOFTWARE-DEFINED NETWORKING

NAN HAYMARN OO

UNIVERSITY OF COMPUTER STUDIES, YANGON

OCTOBER, 2019

Flooding Attack Detection and Mitigation

in Software-Defined Networking

Nan Haymarn Oo

University of Computer Studies, Yangon

A thesis submitted to the University of Computer Studies, Yangon in partial

fulfillment of the requirements for the degree of

Doctor of Philosophy

October, 2019

Statement of Originality

I hereby certify that the work embodied in this thesis is the result of original

research and has not been submitted for a higher degree to any other University or

Institution.

…..…………………………… .…………........……………………

 Date Nan Haymarn Oo

i

ACKNOWLEDGEMENTS

First and foremost, I would like to thank His Excellency, the Minister for the

Ministry of Education, for providing full facilities during the Ph.D. Course at the

University of Computer Studies, Yangon.

Secondly, a very special gratitude goes to Dr. Mie Mie Thet Thwin, Rector of

the University of Computer Studies, Yangon, for allowing me to develop this research

and giving me general guidance during the period of my study.

I sincerely would like to express my greatest pleasure and the deepest

appreciation to my supervisor, Dr. Aung Htein Maw, Professor, the University of

Information Technology, Yangon. Without his excellent ideas, guidance, caring,

patience, and persistent help, this dissertation would not have been possible.

I would like to express my deepest gratitude to Dr. Ling Teck Chaw,

Associate Professor, the University of Malaya, Malaysia, for his kindly guidance,

invaluable practical advices, and fruitful ideas for the whole of my dissertation.

I would also like to extend my special appreciation and thanks to the external

examiner, Professor Dr. Thandar Phyu, Director of Technology Group, ATG

Company Ltd., for her patience in critical reading the thesis, the useful comments,

advices and insight which are invaluable to me.

I am also very grateful to Dr. Khine Moe Nwe, Professor, and Course-

coordinator of Ph.D. 9th Batch, University of Computer Studies, Yangon, for her

valuable advice, moral and emotional support in my research work.

I deeply would like to express my respectful gratitude to Daw Aye Aye Khine,

Associate Professor, Head of English Department for her valuable supports from the

language point of view and pointed out the correct usage not only through the Ph.D.

course work but also in my dissertation.

I am also very grateful to Dr. Zin May Aye, Professor, and Dr. Kyi Kyi Maw,

Lecturer, from the Cisco Network Lab, for their warmly supports, kindly careness,

and insightful discussions for doing the dissertation without any hardening.

My sincere thanks also go to all my respectful Professors for giving me

valuable lectures and knowledge during the Ph.D. course work.

I also thank my friends from Ph.D. 9th Batch for providing support, care, and

true friendship along the way.

ii

Last but by no means least, I must express my very profound gratitude to my

family for always believing in me, for providing me with unfailing support and

continuous encouragement, for their endless love throughout my years of Ph.D. study

and through the process of researching and writing this dissertation. This

accomplishment would not have been without them.

iii

ABSTRACT

Flooding attack is a network attack that sends a large amount of traffic to the

victim networks or services with the aim of causing denial-of-service. In Software-

Defined Networking (SDN) environment, this attack might not only breach the hosts

and services but also the SDN controller. Besides, it will also cause disconnection of

links between the controller and the switches. Thus, an effective detection and

mitigation technique of flooding attack is required. Statistical analysis techniques are

widely used for detection and mitigation of flooding attack. However, the

effectiveness of these techniques strongly depends on the defined threshold. Defining

the static threshold is a tedious job and most of the time produces a high false positive

alarm. In this system, we proposed the dynamic threshold which is calculated using

Modified Adaptive Threshold Algorithm (MATA). The original Adaptive Threshold

Algorithm (ATA) is based on the Exponential Weighted Moving Average (EWMA)

formula which produces high number of false alarms. To reduce the false alarms, the

alarm signal will only be generated after a minimum number of consecutive violations

of the threshold. This however has increased the false negative rate when the network

is under attack. In order to reduce this false negative rate, MATA adapted the baseline

traffic information of the network infrastructure. The comparative analysis of MATA

and ATA is performed through the measurement of false negative rate, and accuracy

of detection rate. The experimental results show that MATA is able to reduce false

negative rate up to 17.74% and increase the detection accuracy of 16.11% over the

various types of flooding attacks at the transport layer.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT iii

TABLE OF CONTENTS iv

LIST OF TABLES x

LIST OF EQUATIONS xii

1. INTRODUCTION 1

1.1 Problem Statement ... 3

1.2 Motivation of the Research .. 4

1.3 Objectives of the Research .. 5

1.4 Focus of the Research .. 5

1.5 Contributions of the Research .. 6

1.6 Organization of the Research ... 7

2. LITERATURE REVIEW 9

2.1 DDoS Attack .. 9

2.2 Limitation of Traditional Networking for Defending of DDoS Attack 10

2.3 Software-Defined Network (SDN) .. 11

2.4 Advantages of SDN over the Existing DDoS Defense Mechanism 12

2.5 SDN-based DDoS Attack Detection .. 13

2.5.1 Statistical Analysis .. 13

2.5.1.1 Entropy ... 14

v

2.5.1.2 Change Point Detection ... 16

2.5.2 Machine Learning ... 18

2.5.3 Traffic Pattern Analysis .. 20

2.5.4 Connection Rate .. 21

2.5.5 Integration of Traffic Monitoring Tool and OpenFlow 23

2.6 SDN-based DDoS Attack Mitigation .. 25

2.6.1 Drop Packet or Block Port .. 26

2.6.1.1 Source-based Defense Mechanism .. 26

2.6.1.2 Destination-based Defense Mechanism ... 26

2.6.1.3 Hybrid Defense Mechanism .. 26

2.6.2 Redirection .. 27

2.6.3 Control Bandwidth .. 27

2.6.4 Change Network Topology ... 27

2.7 Chapter Summary .. 28

3. BACKGROUND THEORY 30

3.1 Software-Defined Networking ... 30

3.1.1 Architecture of SDN ... 30

3.1.1.1 OpenFlow Protocol .. 32

3.1.1.2 Open vSwitch ... 34

3.1.1.3 Controller (Open Network Operating System – ONOS) 35

3.1.2 Flow Rule Installation in SDN .. 37

vi

3.1.2.1 Reactive Flow Instantiation ... 37

3.1.2.2 Proactive Flow Instantiation .. 38

3.1.2.3 Hybrid Flow Instantiation .. 38

3.2 SDN-based DDoS Attack Detection Scheme .. 38

3.2.1 Packet Statistic with sFlow-RT analyzer in SDN 39

3.2.1.1 Sampling .. 40

3.2.1.2 Polling .. 41

3.2.2 Change Point Detection Algorithms ... 41

3.2.2.1 Adaptive Threshold Algorithm (ATA) .. 42

3.2.2.2 Modified Adaptive Threshold Algorithm (MATA) 43

3.3 SDN-based DDoS Attack Mitigation Scheme ... 44

3.4 Performance Evaluation in Network Security ... 45

3.5. Chapter Summary ... 46

4. FLOODING ATTACK DETECTION AND MITIGATION SYSTEM 47

4.1 Architecture of Flooding Attack Detection and Mitigation System 47

4.1.1 Detection Phase ... 47

4.1.1.1 Flow Definition .. 48

4.1.1.2 Flow Handling ... 48

4.1.1.3 Event Handling .. 50

4.1.2 Mitigation Phase ... 51

4.1.2.1 MATA–based Mitigation ... 52

vii

4.1.2.2 ATA–based Mitigation .. 52

4.2 Chapter Summary .. 53

5. IMPLEMENTATION AND EVALUATION OF FLOODING ATTACK

DETECTION AND MITIGATION 54

5.1 Experimental Testbed Design .. 54

5.2 Experimental Results ... 55

5.2.1 Scenario 1: SYN Flooding Attack Detection and Mitigation 55

5.2.1.1 Experimental Results for Scenario 1.. 58

5.2.2 Scenario 2: Flooding Attacks Detection and Mitigation............................. 61

5.2.2.1 False Alarms Avoidance in ATA-based Detection 62

5.2.2.2 False Alarms Avoidance in MATA-based Detection 63

5.2.2.3 Experimental Results for Scenario 2.. 70

5.3 Chapter Summary .. 85

6. CONCLUSION AND FUTURE WORKS 86

6.1 Summary of Dissertation ... 86

6.2 Advantages and Limitations .. 89

6.3 Recommendations for Future Work .. 90

AUTHOR’S PUBLICATIONS 92

BIBLIOGRAPHY 93

LIST OF ACRONYMS 101

APPENDIX A: FLOODING ATTACK DETECTION 104

APPENDIX B: FLOODING ATTACK MITIGATION 112

viii

 LIST OF FIGURES

Figure 3.1 Basic SDN Architecture ... 31

Figure 3.2 Main Components of OpenFlow Enabled Switch 32

Figure 3.3 Installation of Reactive Flow Rule in OpenFlow 38

Figure 3.4 SDN Architecture with sFlow-RT Analyzer .. 40

Figure 4.1 Overall Architecture of Flooding Attack Detection and Mitigation 47

Figure 4.2 Detection Process in sFlow-RT Analyzer .. 48

Figure 4.3 Mitigation Process in 𝒅𝒅𝒐𝒔𝒎𝒊𝒕𝒊𝒈𝒂𝒕𝒊𝒐𝒏 Application 52

Figure 5.1 Experimental Testbed Design... 54

Figure 5.2 Duration for the Monitoring and Attacking.. 57

Figure 5.3 Detailed Network Topology of Experimental Testbed 57

Figure 5.4 Adaptive Threshold Vs Incoming Traffic by ATA 59

Figure 5.5 Adaptive Threshold Vs Incoming Traffic by MATA 59

Figure 5.6 Comparison of Filtering Result of 𝒅𝒅𝒐𝒔𝒎𝒊𝒕𝒊𝒈𝒂𝒕𝒊𝒐𝒏 Application with

ATA and MATA. ... 60

Figure 5.7 Network Topology for the Experimental Testbed 61

Figure 5.8 Event Information from sFlow Analyzer ... 62

Figure 5.9 List of Command in the 𝑺𝒄𝒓𝒊𝒑𝒕_𝑭𝒊𝒍𝒆 .. 65

Figure 5.10 List of Payload Size with Log2 in the 𝒑𝒂𝒚𝒍𝒐𝒂𝒅𝒔𝒊𝒛𝒆 File 65

Figure 5.11 Adaptive Threshold Produced by ATA .. 72

Figure 5.12 Adaptive Threshold Produced by MATA .. 72

Figure 5.13 Comparisons of DR over Various Types of Services 74

ix

Figure 5.14 Comparisons of FNR over Various Types of Services 75

Figure 5.15 Comparisons of Accuracy over Various Types of Services 75

Figure 5.16 Web Traffic and its Adaptive Threshold .. 77

Figure 5.17 FTP Traffic and its Adaptive Threshold ... 77

Figure 5.18 Mail Traffic and its Adaptive Threshold .. 77

Figure 5.19 DNS Traffic and its Adaptive Threshold.. 78

Figure 5.20 NTP Traffic and its Adaptive Threshold .. 78

Figure 5.21 Comparisons of Various Attack Rates over Web Service 79

Figure 5.22 Comparisons of Various Attack Rates over DNS Service 79

Figure 5.23 Comparisons of Various Attack Time over Web Service 81

Figure 5.24 Comparisons of Various Monitoring Time over Web Service 81

Figure 5.25 Comparison of Network Traffic with and without Filtering 82

Figure 5.26 Comparison of Attack Packets reach the Victim Servers 83

Figure 5.27 Comparative Results for Network Performance during the Network is

being in Attack ... 84

x

LIST OF TABLES

Table 1.1 Recent DDoS Attack .. 4

Table 3.1 Main Components of a Flow Entry.. 33

Table 3.2 Suggested Values for Sampling Rates ... 40

Table 3.3 Confusion Matrix ... 45

Table 5.1 Hardware Information for Experimental Testbed .. 55

Table 5.2 Software Information for Experimental Testbed ... 55

Table 5.3 Parameter Setting for MATA .. 56

Table 5.4 Experimental Testbed Information .. 57

Table 5.5 Comparison of Performance between ATA and MATA 61

Table 5.6 Testbed Information ... 62

Table 5.7 Number of Consecutive Threshold Violation .. 63

Table 5.8 Theoretical Traffic Model for Generating IDT and PS 64

Table 5.9 Assumption for Generating of IDT and PS for Each Service 64

Table 5.10 Assumption for Packet Generation Rate .. 65

Table 5.11 List of Some Event Information from sFlow Analyzer 66

Table 5.12 List of Some Abnormal Information for NTP Service 67

Table 5.13 List of Some Abnormal Information for DNS Service 67

Table 5.14 List of Some Abnormal Information for DHCP Service 68

Table 5.15 List of Some Abnormal Information for Web Service 68

Table 5.16 List of Some Abnormal Information for FTP Service 68

xi

Table 5.17 List of Some Abnormal Information for Mail Service 69

Table 5.18 List of Baseline for Each Service .. 69

Table 5.19 Reduction of Attack Packets Reach the Victim Servers 83

xii

LIST OF EQUATIONS

(3. 1) ... 42

(3. 2) ... 42

(3. 3) ... 42

(3. 4) ... 43

(3. 5) ... 43

(3. 6) ... 44

(3. 7) ... 44

(3. 8) ... 44

(3. 9) ... 45

(3. 10) ... 45

(3. 11) ... 46

1

CHAPTER 1

INTRODUCTION

Flooding attack sends an extremely amount of network traffic intending to

overwhelm the target network or a particular victim server and prevent the normal

connection requests from benign users. Thus, it is a common type of Distributed

Denial of Service attack (DDoS). The impact of this flooding attack can bring down

the target victim within a very short time. The target can be the network or servers

running with traditional or advanced techniques, software-defined networking (SDN)

[8, 26].

The software-defined network is a new modern network architecture

decoupling logically control functions with data forwarding devices by using

OpenFlow protocol [77]. As the whole SDN network is controlled by the controller,

the main feature of SDN is a logically centralized control of the network. By using

this feature, the DoS attack can be detected and mitigated straightforwardly [24].

Oppositely, the attackers might use the advantage of this feature by breaching the

centralized controller to control the whole SDN network [79].

There are two different types of flooding attacks: protocol exploited attack,

and amplification or reflection attack. The common protocol exploited attacks are

SYN flooding, UDP flooding, and ICMP flooding attack. DNS amplification and NTP

amplification attacks are belonging to the group of amplification or reflection attacks

[6]. Among them, this system is implemented especially for the detection and

mitigation of SYN flooding and UDP flooding that exploits the TCP and UDP

protocol, respectively.

SYN flooding attack is one of the most common types of DoS attacks. It

exploits the TCP three-way handshake procedure for interrupting and repudiating the

normal network services. The attackers launch the SYN flooding attack by sending a

very large number of SYN packets continuously to the victim server without waiting

for any acknowledgments.

In the UDP flooding attack, the attackers send a large stream of UDP packet

with the specific or random port number to the target server using a spoofed source IP

address. The victim server responds to ICMP packets for the port which does not

listen. As a result, the attack consumes all the network bandwidth and overloads the

server to be able to disturb normal operations. In the SDN network, the UDP flooding

2

attacks significantly increase both bandwidth consumption and the controller's CPU

consumption [62].

Hence, even a few seconds of flooding attacks might breach the server. If their

target victim is the SDN controller, the whole SDN network will break down due to

the impacts of the attacks. Thus, SDN networks are needed to protect the flooding

attack by using the effective detection and mitigation technique of the attacks.

The SDN-based DoS attacks can be detected by using many different

techniques such as entropy, change point detection, machine learning, traffic pattern

analysis, connection rate analysis, and integration of traffic monitoring tools and

OpenFlow. Moreover, these attacks can be mitigated by dropping packets or blocking

port, redirection, control bandwidth, and change network topology [6]. Effective

mitigation of the attack strongly depends on the result produced from the detection

techniques.

Each detection technique has its advantages and disadvantages. For instance,

the entropy-based detection technique can be used in measuring the randomness of the

network traffic within a given period. But it has some limitations such as only a single

value that can be used to calculate the probability distribution of a feature. Similarly,

although machine learning-based techniques are useful for detecting malicious

activity based on the abnormal behavior of the network, the performance of these

techniques is depending on the training dataset [6]. Statistical analysis-based change

point detection technique is widely used among the techniques. As any statistical

analysis techniques define abnormal by comparing the number of traffic statistics with

a threshold value, the effectiveness of these techniques is depending on the definition

of a threshold value.

The threshold can be defined statically or dynamically. The static threshold

needs to find the baseline of the network traffic before setting up the threshold value.

Then the value is needed to change manually by the network administrator when the

network situation is changing. Hence, it is a tedious job for network administrators.

Moreover, it might produce a high number of false alarms. Thus, they used the

dynamic threshold instead of the static threshold.

The dynamic threshold can be calculated simply by using an adaptive

threshold algorithm (ATA) [52]. The ATA calculates dynamic and adaptive threshold

based on the Exponential Weighted Moving Average (EWMA) formula. According to

the formula, it calculates the threshold value over the factor of both current network

3

traffic and previous average network traffic. However, this formula often produces a

high number of false alarms. To avoid raising these false alarms, the ATA algorithm

raises alarm after the number of consecutive violations of the threshold.

Consequently, the mitigation process will be started late for dropping abnormal traffic

and the false-negative rate will be increased when the network is under the real attack.

 To reduce the false-negative rate, this dissertation describes a detection

technique that removes the false alarm significantly by modifying ATA based on the

baseline traffic. Thus, as soon as the threshold value is violated, the alarm will be

raised and the mitigation process will install drop flow rule into the source switch of

the attack instantaneously.

1.1 Problem Statement

The detection and mitigation of SDN-based DDoS attacks have been proposed

by using the various mechanisms such as statistical analysis (change point detection,

and entropy), machine learning, traffic pattern analysis, connection rate analysis, and

integration of traffic monitoring tool and OpenFlow. Although each technique has

pros and cons, the widely used technique among them is the statistical analysis

technique. The function of this technique is comparing the number of incoming traffic

with the threshold, and defining the attack traffic when the threshold is violated by the

incoming traffic.

There are two types of threshold: static and dynamic. But the weakness of the

static threshold is raising a high number of false alarms and a tedious job for the

network administrators. Thus, the dynamic threshold is commonly used in statistical

analysis techniques. The dynamic threshold for the flooding attack can be calculated

by using the adaptive threshold algorithm (ATA). This algorithm produces a high rate

of detection but it also raises a high number of false alarms. Consequently, it produces

a high number of false negative rates avoiding false alarms. Thus, this algorithm is

modified by taking into account the baseline of the network traffic to reduce the false

negative rate avoiding false alarms. The main objective of the modified adaptive

threshold algorithm (MATA) is to produce the dynamic threshold value that is

adaptable over the incoming traffic based on the baseline.

4

1.2 Motivation of the Research

The legacy defense mechanisms are not completely effective as the rising

occurrence of Distributed Denial of Service (DDoS) attacks. The recent DDoS attacks

on various recognized organizations are listed in Table 1.1. These attacks are targeting

nearly every organization especially in financial institutions and government

organizations relying on IT infrastructure and resources. As shown in Table 1.1, even

such great organizations are unable to countermeasure the DDoS attacks. A new

modern design of the network is needed to explore needed to explore for detecting

and mitigating the attacks successfully. Software-Defined Networking (SDN) has

developed for solving the growing problems of DDoS attacks.

Table 1.1 Recent DDoS Attack

Target Date Impacts

Spain's central

bank

August

2018

Bank’s website was intermittently offline for one

day [50].

Americas

Cardroom (ACR)

April

2018

Poker tournaments cancelled after DDoS attacks. A

series of massive DDoS attacks forcing the

company to pause all running tournaments from

April 24 until May 1 [21].

Sucuri (Website

security firm)

April

2018

A series of massive DDoS attacks causing service

outage in West Europe, South America and parts of

Eastern United States [61].

GitHub’s code

hosting website

February

2018

The traffic peaked at 1.3 terabytes per-second. The

attack last for about 20 minutes [42].

Luxembourg

government

servers

February

2017

Over a hundred servers had been affected by the

attack and that the attack impacted servers for more

than 24 hours [27].

Dyn (Internet

performance

management and

web application

security company)

October

2016

Dyn came under attack by two large and complex

Distributed Denial of Service (DDoS) attacks

against their Managed DNS infrastructure for about

four hours [25].

https://www.wired.com/story/github-ddos-memcached/

5

1.3 Objectives of the Research

The general objective of this system is to detect and mitigate flooding attacks

at the transport layer over the SDN network most simply and effectively. The specific

objectives of this system have two folds: detection and mitigation.

The main objective of the detection is to reduce the false negative rate caused

by false alarms. Thus, this system intends to reduce the false alarms significantly by

considering the baseline of the network infrastructure while the calculation of

dynamic and adaptive threshold value. The consequent objectives are to increase the

detection rate and accuracy of this system.

As this system is detecting and mitigating the flooding attacks with a non-

spoof IP address, the objective of its mitigation is to prevent the reduction of the

network speed during the attack by decreasing the bandwidth consumption. Since

flooding attack is one type of DoS attack, the main objective is to maintain the

availability of the network infected by the attack.

1.4 Focus of the Research

This research focuses on developing an intrusion detection system for

monitoring the network to detect and mitigate the DDoS attacks. These focus works

include the following:

▪ create a simple firewall application in SDN for filtering one of the types of

DoS attack (i.e, Ping of Death attack)

▪ create a stateful forwarding application based on the existing fwd application

in ONOS controller by adding the connection state inspection

▪ create a stateful firewall application by the combination of stateful forwarding

application with the acl application (i.e. stateless firewall) in ONOS controller

▪ detect the SDN network by sFlow-RT analyzer with static threshold and

mitigate the detected attack with the drop flow rule

▪ find the algorithm to calculate dynamic threshold and implement the ATA

algorithm in the sFlow analyzer for detecting the SYN flooding attack

▪ monitor the rate of the incoming frame for differentiating the normal and

attack

▪ modify the adaptive threshold algorithm and implement it in the sFlow

analyzer

6

▪ find baseline traffic of the network infrastructure

▪ mitigate the detected attack by using two types of defense mechanism

▪ measure the percentage of performance parameters and compare the results of

the two algorithms (i.e. existing algorithm and modified algorithm) with the

two types of defense mechanisms.

1.5 Contributions of the Research

The combination of the operations of sFlow-RT analyzer and OpenFlow for

the flooding attack detection and mitigation are contributed to reducing the overload

of traffic statistics analysis in the SDN controller.

The default function of statistical analysis in sFlow-RT analyzer using static

threshold might produce many false alarms. Thus, the dynamic and adaptive threshold

is contributed to the traffic comparison of the analyzer.

The existing algorithm for the calculation of the dynamic and adaptive

threshold, adaptive threshold algorithm, consequently increased the false negative rate

while avoiding false alarms. Thus, the main contribution of this system is modifying

the adaptive threshold algorithm by taking into account the baseline of the network

traffic while calculating the adaptive and dynamic threshold.

Another contribution is applying the source-based defense mechanism when

the mitigation system is installing the drop flow rule for the attack as this system is

detecting and mitigating the non-spoofing flooding attack especially.

Moreover, depending on the attacking condition, two different types of drop

flow rule installation is contributed to effectively mitigate the flooding attack. The

new incoming attack is temporarily dropped by flow rule with a timeout value and the

attack which has been income in this system is permanently discarded.

For practically experiment this system with the nearly like real traffic in the

virtualized environment, the traffic generation is contributed to the combination of the

traffic generation models in the 𝐷 − 𝐼𝑇𝐺 (Distributed Internet Traffic Generator) tool.

The various options in ℎ𝑝𝑖𝑛𝑔3 tool is also used for launching the flooding attack on

both types of transport layer protocols: TCP and UDP.

Besides, for effectively evaluating this system, the various experimental

results are produced with a different point of view by using both types of traffic

capturing tool: 𝑡𝑐𝑝𝑑𝑢𝑚𝑝 and 𝑤𝑖𝑟𝑒𝑠ℎ𝑎𝑟𝑘 . This system also checks the number of

7

packets passing the drop flow rule by using the Open Vswitch commands and used it

in the calculation of the security performance parameters with the standard formulas.

1.6 Organization of the Research

This dissertation is organized with six chapters.

Chapter 1 describes the introduction of the dissertation with the motivation of

why this proposed system is needed to implement, the problems in the area of

detection and mitigation of flooding attack, and the solution to the problems, by

means of the proposed system. Moreover, the contribution of this dissertation and the

focus works along the dissertation are described in this chapter.

Chapter 2 describes the DDoS attack as the preliminary of the flooding

attacks, the limitation of the traditional network for defending the attack, and the brief

description of SDN and its benefits over the limitations of existing DDoS defense

mechanisms. Besides, this chapter also presents the detection and mitigation of the

DDoS attack based on the SDN architecture over the various types of mechanisms in

the previous work.

Chapter 3 presents the detailed description of SDN with its architecture and

the main function of SDN, flow rule installation. Furthermore, it has described the

two essential theories needed in the detection of the traffic such as sampling and

polling. It also presents the dynamic threshold calculation algorithms used in this

dissertation. Apart from the detection theory, it has described the mitigation

mechanism of the DDoS attack and the evaluation method for the network security

performance.

Chapter 4 describes not only the overall system architecture of flooding attack

detection and mitigation but also the detailed system architecture of it with the

detection and mitigation phase separately. It also presents each phase with the two

dynamic threshold algorithms.

Chapter 5 demonstrates the design and experimental implementation of the

flooding attack detection and mitigation by using two scenarios representing the SYN

flooding attack specifically and flooding attacks at the transport layer (i.e. SYN flood

and UDP flood). Moreover, the experimental results of them are evaluated with the

detection results and mitigation results.

8

The final chapter 6 concludes this dissertation with a description of the

advantages and limitations of this system. It finally lists the works that can be

furthered continue to do in the future.

9

CHAPTER 2

LITERATURE REVIEW

Although many techniques are proposed and deployed in the detection and

mitigation of the DDoS attacks, some famous and recognized organizations were

infected by the high-speed DoS attacks recently. This might be the weakness of the

detection and mitigation mechanism for the DoS attacks in the traditional network.

The advanced features of the SDN network such as centralized control and separate

the control functions and data forwarding devices are useful in detecting and

mitigating the attacks. However, SDN has some weaknesses related to the DoS

attacks such as breaking down the controller, hosts connected to the SDN network,

and links between the control plane and the data plane.

The purpose of this chapter is to enlighten why SDN is important in the

detection and mitigation of DDoS attacks. First, the DDoS attacks are briefly

described. Then, the limitations of traditional networking and the advantages of SDN

for defending them are presented. The chapter also explains the reviews of the

techniques used in SDN-based DDoS detection and mitigation.

2.1 DDoS Attack

 A significant attack targeting the availability of victim network resources or

services is known as Denial of Service (DoS). DDoS attacks are one type of DoS

attacks that are launched by more than one attacker who is being distributed all over

the internet and sending a large volume of malformed or legitimate packets.

The aim of the attack is repudiating the normal users from using the resources

of the victim network or services. The attack traffic consumes the bandwidth of the

victim network or computing resources of the victim host. Moreover, to conceal their

location and identity, the attackers are using spoofed IP addresses.

Some popular examples of DDoS attacks are flooding based attacks that send

an extreme amount of network traffic to overwhelm the victim. The type of flooding

attacks can be divided into two categories: protocol exploited attack, and

amplification or reflection attack. The common protocol exploited attacks are SYN

flood, UDP flood, and ICMP flood attack. DNS amplification and NTP amplification

attacks are belonging to the group of amplification or reflection attacks.

10

In the SYN flood attack, the attackers exploit the TCP's three-way

handshaking mechanism of connection establishment process and send a large number

of SYN packets continuously. The server's memory is filled with the connection

requests and rejects connection requests from legitimate users eventually.

In the UDP flood attack, the attackers send a large stream of UDP packet with

the specific or random port number to the target server using a spoofed source IP

address. The victim server responds to ICMP packets for the port it does not listen. As

a result, the attack consumes all the network bandwidth and overloads the server to be

able to disturb normal operations.

In the ICMP flood attack, the attackers exploit the ICMP's ICMP_ECHO_

REQUEST packet. They send the packets with a broadcast address to the victim

network with a spoofed IP address of the victim host as the source address of the

packet. The attack might use an intermediate network to flood the victim. The

network could be congested with a huge number of ICMP_ECHO_REPLY packets.

Consequently, the server rejects the legitimate user's requests.

In the DNS amplification attack, the attackers exploit the vulnerability of the

Domain Name System (DNS). They send a large number of UDP packets by using

publicly available open recursive DNS servers intending to flood the victim. Thus, the

attack is also known as a type of reflection attack. The attacker can increase the

volume of traffic through different amplification techniques. As a result, the victim

network could be affected seriously, which hinders legitimate users to get into the

server. The NTP amplification attack is similar to a DNS amplification attack. It

exploits the NTP server instead of the DNS server.

2.2 Limitation of Traditional Networking for Defending of DDoS Attack

The main limitations of DDoS attack defending mechanisms in the traditional

network are administration cost and flexibility. Since most of the network

configurations are performed manually, it is not easy to change configuration

dynamically in network devices to control the suspicious network traffic of the DDoS

attacks.

It is very difficult, error-prone, and time-consuming to manage the traditional

network such as configuring the network security equipment like a firewall, Intrusion

Detection System (IDS), Intrusion Prevention System (IPS), MiddleBoxes, and

11

Access Control List (ACL). Moreover, an individual network configuration in every

device needs to be reconfigured when any network policy is changing. As a result,

steering network traffic is not flexible in the traditional network.

In addition to the software configuration of these devices, the physical location

is also important in considering network security. For example, a firewall must be

located at the main gate of the network as a border of the entire network. Another

huge problem deals with the traditional network is the cost of the investment and

maintenance for each network device. As the future network system is changing

rapidly, the traditional way of deploying network cannot meet the requirement,

especially in security, manageability, and adaptability.

 Moreover, the current trends of DDoS attacks indicate the limitation of

traditional networking. Attackers have developed the sophisticated mechanisms for

bypassing the traditional protection not only by increasing the attack in size but also

by sophisticating them in methods.

 The introduction of SDN has taken the solution for the above-mentioned

problems of security in traditional networking. The two main features of SDN,

centralized control of the whole network architecture, and decoupling the data

forwarding layer and control layer are very useful to develop the SDN-based Flooding

attack detection and mitigation mechanisms. Before the discussion of these

mechanisms, the SDN is briefly explained.

2.3 Software-Defined Network (SDN)

Unlike traditional networking, Software-Defined Networking decouples the

network control operations from the data forwarding devices by using the OpenFlow

protocol. Thus, all control functions are logically moved to the centralized controller

and the devices at the data forwarding layer are controlled by the controller. The main

objective to do so is to overcome the limitations of a traditional network. The network

architecture can be rearranged with the software program by giving the authority of

network administration to the controller on the control plane. Thus, the

programmability and the centralized control approaches can improve the flexibility of

network operations.

OpenFlow protocol is used as the communication between the controller at the

control plane and switch at the data plane. The controller installs forwarding rules into

12

the flow table of OpenFlow enabled switches. The switch matches the incoming

traffic with the flow rule and then relays the traffic according to the action defined in

the flow rule such as forwarding, modifying and dropping. OpenFlow switch becomes

a layer 2 forwarding switch, layer 3 switch or router, load balancer, or firewall

according to the rules installed by the application running in the controller. Therefore,

DDoS attack detection and mitigation application could also be developed in SDN

architecture.

The attacks can be easily detected by using the features of SDN such as the

concept of flow-based traffic, centralized control function, and data and control plane

separation. Moreover, these features are helpful to mitigate the DDoS attack rapidly

and flexibly. Although SDN architecture provides the capabilities to develop an

effective countermeasure for DDoS attack, it also has some weaknesses in each layer

of it, such as flow-table overflow attack to the OpenFlow switches in the data plane

and DDoS attack to the controller in control plane. But this research focuses on the

features for improvement of security using SDN. The next section lists the effective

features of SDN for releasing the limitation of existing DDoS defense mechanisms

over the traditional network.

 2.4 Advantages of SDN over the Existing DDoS Defense Mechanism

The DDoS attack can be easily detected and mitigated in software-defined

networking because of its new available features such as:

1) Logically centralized control of the network: The controller provides

effective security policies for the entire network to protect the DDoS attacks

because it has the visibility of the network from the global point of view.

2) Network programmability by external applications: Any type of algorithm

for DDoS attack detection and mitigation can be programmed as an

application of SDN. Thus, this feature supports the highest flexibility of

network management.

3) Software-based traffic analysis: OpenFlow enabled switch used in SDN

architecture can enhance its capabilities by using a software-based mechanism.

It means that the traffic can be analyzed in real-time by any software or

machine learning techniques [32].

13

4) Dynamic updating of forwarding rules: The forwarding rule for dropping,

redirecting the attack traffic can be installed dynamically into the switch as

soon as the attack is detected [24].

2.5 SDN-based DDoS Attack Detection

The distinctive features of SDN in the above-mentioned session can be used as

the main function in DDoS attacks' detection and mitigation. In this session, the

common SDN-based DDoS attack detection techniques are described with their

literature reviews.

2.5.1 Statistical Analysis

An Nguyen Viet et al. [58] proposed a hardware-based defense system in SDN

architecture to protect the HTTP GET Flooding attacks by using the per-URL

counting mechanism. Their defense system was implemented on FPGA as an

extension of the 1G NetFPGA-based OpenFlow switch.

Ping Dong et al. [17] proposed an effective detection method for detecting the

DDoS attack and locating the compromised interfaces connected with the attackers.

The approach firstly classifies the flow events associated with an interface, and then

make a decision using the Sequential Probability Ratio Test (SPRT), which has

ranged false positive and false negative error rates. Their method produces higher

promptness, versatility, and accuracy when compared with the other three detection

methods such as percentage, count, and entropy of the flows.

Hung-Chuan Wei et al. [62] proposed a lightweight countermeasure for the

UDP flooding attack in SDN by monitoring the number of incoming or outgoing

packets in a period by the controller. In other words, the controller differentiates the

normal and abnormal conditions by using the number of packets. Hence, as soon as an

abnormal number of packets appear, the controller can detect it instantly.

Laura Mutu et al. [40] proposed a responsive technique to UDP attacks in

SDN using activating triggers at the switch level. This technique designed a traffic

percentage trigger based on the proportionality of outgoing UDP traffic to overall

network traffic. Moreover, they also proposed an amplification trigger based on

incoming UDP traffic relative to outgoing.

14

2.5.1.1 Entropy

Entropy has been successfully used in measuring the randomness of the

network traffic within a given time. It has also been recognized as an effective

mechanism in computing the randomness of a dataset. Depending on the entropy

value: high or low, the probability distribution is different. The former is represented

for more dispersed probability distribution and the later signifies the concentration of

a distribution. Thus, these mechanisms are used broadly for attack detection in

traditional networking. These techniques are more useful in the fine-grained pattern

that incapable to get the volume-based traffic. Various types of features such as the

number of packets, IP addresses, and flow of network can be used for computing

entropy. These mechanisms can provide low overhead in computing.

Entropy has successfully been used in the detection of DDoS attacks over

traditional networking. For this reason, it has become an effective method for the

detection in SDN. Giotis et al. [22] proposed an effective and scalable anomaly

detection and mitigation mechanism for DDoS, worm propagation, and portscan

attacks using maximum entropy value with the flow-based traffic features such as

source and destination IP address and port. They also evaluated the data collection

methods: native OpenFlow and sFlow on the real network traffic data by comparing

CPU and flow table size usage.

The advantages of their approach were reducing data gathering with sampled

via sFlow, less communication between switches and OF controllers and minimized

the false-positive rates. The attacks are mitigated by installing bidirectional flow rule

with drop action and higher priority than other forwarding rules. But they did not

emphasize the deployment location for mitigation as their experimental topology had

only one switch. The experiment was conducted with one of the two types of

switches: Open vSwitch and NEC hardware switch, and NOX controller. And they

used a predefined threshold value for deciding which traffic is normal or malicious.

Moreover, the sampling flow rate may reduce the accuracy of their method.

To reduce communication overhead, Wang et al. [60] ran the entropy-based

DDoS attack mechanism in each local edge switch locally by experimenting on the

modified version of Open vSwitch in mininet emulator and FloodLight controller.

They used the CAIDA dataset for testing the system and evaluated with different

monitoring intervals comparing the detection rate and false-positive rate. They

15

dropped the attacked packets by installing flow rule with drop action at the source

switch of the attack. They observed that the smaller monitoring interval, the quicker

detection time. Since they run the detection mechanisms in each local edge switch,

their system can only detect DDoS attacks on its local network connected to the

switch.

Mehdi et al. [38] implemented anomaly detection with four prominent

algorithms including maximum entropy, NETAD, rate-limiting, and TRW-CB on

both SOHO network and ISP network datasets. And they compared and described the

accuracy, efficiency of NOX implementation on the two networks. They also

evaluated the CPU usage on the NOX BOX for the home dataset. They observed that

the accuracy of home networks is higher than ISP networks. Although they did not

implement any mitigation mechanism for the system, they assumed the result of the

detection could be used not only in the home network but also in the global network.

J. Mao et al. [37] proposed a novel joint-entropy-based DDoS detection

solution with multiple features of packets. They chose the flow duration, packet

length, source address, and destination port as the key features for the detection of

different types of DDoS flooding attacks. They also carried out experiments with

simulated campus networks based on SDN architecture.

Dingwen Hu et al. [26] proposed FADM, an efficient and lightweight

framework for the detection and mitigation of DDoS attacks in SDN. They firstly

collected the network traffic information through the SDN controller and sFlow

agents. Then, they used an entropy-based method to measure network features. They

also applied the SVM classifier to identify network anomalies. Their combination

methods effectively improved the timeliness and accuracy of attack detection. For

keeping the major network functionality working, they proposed an efficient attack

mitigation mechanism based on the white-list and traffic migration. They also

introduced the mitigation agent for blocking attack traffic in a timely fashion while

forwarding the benign traffic as usual. In this way, they prevented the resource of the

controller from being exhausted and allowed the legitimate users can access the

network normally.

 Prashant Kumar et al. [31] proposed SAFETY, a novel solution for the early

detection and mitigation of TCP SYN flooding. The proposed system harnessed the

programming and wide visibility approach of SDN with the entropy method for

16

determining the randomness of the flow data. The information on entropy contains

destination IP and a few attributes of TCP flags.

Houda Guesmi et al. [24] proposed an approach for the detection of DDoS

attacks by the SDN controller using Fast Entropy algorithms. They used SDN

capabilities and the Fast Entropy method to maintain the security of the cloud system

from DDoS attacks in real-time. Fast Entropy is modified information entropy for

reducing the computational time than the conventional entropy in detecting the attack.

By using the SDN and fast Entropy method, the approach is efficient in the collection

and analysis of the traffic, detection of DDoS in real-time, blocking attack packets

and forwarding legitimate flows to the cloud provider.

Phan, The Duy et al. [20] presented an approach of DDoS attack detection in

the SDN environment by using the entropy metric and considering the differences in

the host role profile for suspecting under-attack state. Moreover, they dealt with the

time factor in the process of collecting information. Then, a statistical method was

used to investigate the flow information sent from OpenFlow switches for confirming

the previous suspicion. This method could detect DDoS attacks promptly at its early

stage, where the role profile of the host is taken into consideration.

Entropy-based mechanisms can be used for the detection of DDoS attack,

however, they had some limitations such as only a single value can be used to

calculate the probability distribution of a feature. This mechanism is very effective for

analysis. But the other information related to the distribution of the analyzed feature is

lost. As a result, the anomaly effects can be concealed in some cases. In the same

way, this mechanism could not differentiate the different distributions with equal

uncertainty. Therefore, malicious traffic without randomness will not be detected.

2.5.1.2 Change Point Detection

The most common detection technique for identifying DDoS attacks in a

particular network is statistical analysis. The values of parameters representing the

network traffic are either remain constant or change slowly over time for the duration

of normal operation. In contrast, these parameters are not remaining constant and

changing abruptly when abnormal traffic is occurred by DDoS attack. Hence, the

problem of DDoS detection can be formulated as a change point detection problem.

17

The basic function of change point detection techniques is to detect varying in

the statistical properties of the network traffic with fast detection time and a low false-

positive rate. Statistical Process Control (SPC) techniques and Quality Control (QC)

are a statistical mechanism for anomaly detection. These mechanisms use the

statistical properties of network traffic for the estimation based on the type of original

distribution. They can be divided into two types: parametric and non-parametric. SPC

techniques can be used in the detection of the variation of the mean and variance of a

process [13].

A non-parametric CUSUM with an adaptive threshold algorithm was used for

calculating the dynamic threshold in [13]. The authors, Conti et al. proposed a

comprehensive, effective and lightweight mechanism for the detection of the various

types of DDoS. They used CAIDA for defining initial threshold value as baseline

traffic and DARPA dataset to assess effectiveness and versatility for attack types such

as smurf, Neptune, IPsweep and Portscan. They evaluated their system by comparing

the variation of threshold value with CUSUM value under both normal and attack

traffic. Moreover, they measured the average and standard deviation of detection time,

Detection Rate (DR), False Alarm Rate (FAR), and Accuracy (ACC) for each window

size under every unique combination of different values for parameters. Although this

system provided an adaptive threshold for attack detection effectively, it had a little

overhead for exchanging FLOW_STAT messages to get real-time traffic statistics.

And mitigation mechanism was not described in this system.

Moreover, Conti et al. [14] proposed another effective framework including a

lightweight SDN assisted Moving Target Defense (MTD) for protection of network

reconnaissance and an efficient approach for tackling DoS attacks using Software

Defined-Internet Exchange Point (SD-IXP) with one of the widely used change point

detection, Exponentially Weighted Moving Average (EWMA) control chart. As the

system previously proposed, they tested their system with the same dataset, and type

of attacks on the network with three ASs that are emulated by using MiniNext and

SD-IXP, EXaBGP-based controller. It also had a few percentages of CPU overhead

for collecting data. The controller overwrote the forwarding rule for violating flows

with drop action temporarily.

Bawany et al. [6] also used a modified EWMA formula for application-

specific detection and mitigation of DDoS attacks over the smart city data center. In

their proposed system, they considered the tolerance level of each application for

18

deciding the value of the factor variable and mitigation methods. But they did not

implement and evaluate the proposed system.

Abimbola Sangodoyin et al. [49] proposed an effective DDoS detection

mechanism in SDN using throughput as an impact metric. They polled the throughput

within an interval of time for determining the normal distribution of benign network

data and obtaining the Confidence Interval (CI) for the normal distribution. An attack

was specified by a significant deviation in mean throughput value gained at

subsequent intervals compared to the without attack mean throughput. Finding the

value of confidence interval and mean throughput had low overhead and could be

easily implemented in the SDN controller for detecting the anomaly.

2.5.2 Machine Learning

Traditional IDS applied machine learning-based mechanisms such as

Bayesian networks, self-organizing map (SOM), Artificial neural networks, and fuzzy

logic principles and concepts for detecting the anomalies on both wired and wireless

network. These mechanisms are also widely applied in SDN-based DDoS attack

detection. A machine learning-based mechanism distinguished the normal and attack

traffic based on the features of the traffic.

Braga et al. [8] implemented a lightweight DDoS attack detection mechanism

with SOM based on traffic flow features such as Average of Packets per flow (pdf),

Average of Bytes pre flow (ABf), Average of Duration per flow (ADf), Percentage of

Pair-flows (PPf), Growth of Single-flows (GSf), and Growth of Different Ports

(GDP). The flow collector module in NOX controller collected the features, the

feature extractor module extracted the important information for DDoS detection from

the collected features, and then the classifier module analyzed the extracted

information corresponding to the attack or legitimate traffic by using SOM. This

mechanism provided a high rate of detection and a low rate of false alarm. Moreover,

it also incurred the lower overhead of collection for a feature and more flexibility for

adapting the detection with changing network topology than traditional approaches.

But it did not discuss any mitigation mechanism for the detected attack.

Trung V. Phan et al. [47] proposed an optimized protection mechanism

(OpenFlowSIA) for SDN network from DDoS flooding attacks based on SVM and

Idle-timeout Adjustment (IA). Their methodology utilized high accuracy and little

19

processing time from SVM advantages in classification. Moreover, it also effectively

applied the IA algorithm and coherent policies for protecting the network from

resource exhaustion caused by flooding attacks, especially for the OpenFlow switches

and SDN controller.

Dotcenko et al. [18] proposed a fuzzy logic-based security management

system by using the combination of the two anomaly detection algorithms with fuzzy

inference carried out by Mamdani algorithm. These algorithms are TRW-CB and rate-

limiting. This system avoided the excessive amount of computation by using fuzzy

logic. Moreover, the proposed system provided more accurate decisions than the other

systems using detection algorithms without fuzzy logic. However, this system did not

describe any mechanism for attack mitigation.

Dillon et al. [16] proposed a DDoS mitigation system by using OpenFlow. The

proposed system worked with three components. The first component is detecting

anomalies by making the comparison of expected and real standard deviation over

packet and byte rates. The deviation is calculated by utilizing the OpenFlow flow

statistics collected by the Ryu controller for every second. The second component is

identifying the source of the attack with two methods such as packet symmetry and

temporarily blocking. The third component is blocking the identified attacker by

installing OpenFlow rule with drop action.

R. Priyadarshini et al. [48] proposed an innovative Source-based DDoS

defense mechanism that can be used in not only fog environment but also the cloud

environment to mitigate DDoS attacks. It used the SDN to set up the DDoS defender

module at the SDN controller to detect the unusual behavior of DDoS attacks in the

Network/Transport level. They also provided deep learning (DL) based detection

method which uses the network traffic analysis techniques to filter and forward the

normal packets to the server and block the attacked packets.

Tran Manh Nam et al. [41] proposed two DDoS attack detection approaches

which are based on the SOM. They implemented their proposed algorithms with the

detection architecture in the SDN technology which provides flexibility and

programmable abilities. They can quickly perform complex classification and

detection algorithms because of the SDN controller.

Aapo Kalliola et al. [29] proposed a DDoS mitigation and traffic management

system which is largely automated and can be implemented on the SDN technology.

Their mechanism combines fixed or dynamic blacklist integration, automated

20

hierarchical clustering-based normal traffic learning, and service distribution or

additional server capacity invocation within the network. The mechanism is intended

to be effective detection of packet and bandwidth flooding attacks and can be used to

protect both network links and end hosts.

 Machine learning-based mechanisms are more useful for detecting malicious

activity based on the abnormal behavior of the network. However, the performance of

these mechanisms is depending on the training dataset.

2.5.3 Traffic Pattern Analysis

Traffic pattern-based analysis mechanism differentiates the normal and

abnormal traffic by assuming all abnormal hosts produce similar traffic patterns that

are different from the traffic of benign hosts. When a network is infected by a botnet

attack, all bot machines are controlled by a single botmaster. As a result, the bot

machines will have a similar traffic pattern sent from the master host.

Shin et al. [51] implemented an OpenFlow security application development

framework with the OF-enabled detection and mitigation module, FRESCO,

especially for helping the security researchers in their contribution of different

security detection and mitigation modules. One example application written in

FRESCO script is the FRESCO version of Botminer application. BotMiner in this

application also assumes that hosts infected with the same botnet exhibit similar

patterns at the network level, and these patterns are different from benign hosts.

Therefore, the hosts with similar packets per second and bytes per second are defined

as bots.

Jin et al. [28] proposed a malware detection system using SDN that detects

mobile malware by identifying suspicious network activities through real-time traffic

analysis. As they assumed malware infrequently infect only one victim host, their

detection techniques collect similar features of communications such as common

detection, connection time, and common platform from multiple other hosts for

identifying the attack.

Jing Zheng et al. [64] proposed RADAR for the detection and throttling of the

DDoS attacks via adaptive correlation analysis built upon unmodified commercial off-

the-shelf (COTS) SDN switches. It is a practical system for defending against the

various type of DDoS flooding-based attacks such as SYN flooding, link flooding,

and UDP-based amplification attacks. There is no need to modify the SDN switches

21

or protocols and extra appliances. By identifying attack features in suspicious flows,

and locates attackers (or victims) to control the attack traffic by adaptive correlation

analysis, their proposed system could detect the attacks accurately.

I Gde Dharma N. et al. [15] proposed a method that considers the time

duration of DDoS attack detection and attacks the time pattern of DDoS attack for

preventing a future attack. They also presented the potential vulnerabilities in the

SDN controller that can be exploited for DDoS attacks and discuss the methods to

detect and mitigate DDoS attacks.

Ahmad Aleroud et al. [2] presented an inference-relation context-based

technique for the detection of DoS attacks on SDNs. They proposed an inference-

relation context-based technique for the detection of DoS attacks on SDNs. This

technique utilized contextual similarity with existing attack patterns to identify DoS in

an OpenFlow infrastructure. They developed a graph-based mechanism for the

detection of DoS attacks over the SDN network. They also showed the benefit of

using existing attack patterns to discover attacks that target the relation context-based

SDNs. They created a flow aggregation mechanism for further improving the

efficiency of detecting DoS attacks on SDNs.

2.5.4 Connection Rate

There are two types of connection rate-based anomaly detection mechanism:

Number of connections established, and Connection success ratio.

The connection rate-based mechanism with the number of connections

established considers the number of connections instantiated within a certain time.

The number of connections attempts from the infected machine to a particular server

is extremely higher than that from the normal machine. Generally, the normal host

produces a lower number of connections and repeat access to a recent particular

application during a certain time. Thus, this detection mechanism compares the

number of connections established with a threshold to decide the attempting

connections hosted from the normal machines or infected machines.

Similarly, another mechanism with the connection success ratio considers the

number of successful connections ratio over all of the connections including success

and failed connections. The probability of the number of successful connections from

the normal host is much higher than that of the infected host. This mechanism

monitors the new connection request such as the SYN connection request in TCP

22

protocol without being received a response SYN-ACK or received an RST response

when the timeout expires for unsuccessful connections and compared with a threshold

for identifying the infected host. Threshold Random Walk with the credit-based

algorithm is typically used in this mechanism. This algorithm has also been used in

SDN based DDoS detection as in the proposed system for blocking the botnet-based

attacks that are implemented by authors Lim et al [34].

Reza Mohammadid et al. [39] proposed SLICOTS, an effective and efficient

countermeasure for mitigating the TCP SYN flooding attack in SDN. SLICOTS takes

the benefits of the dynamic programmability nature of SDN for detecting and

preventing attacks. SLICOTS was implemented in the controller for surveying TCP

connection requests and blocking malicious hosts. It was implemented as a

lightweight extension module of OpenDayLight controller. They evaluated SLICOTS

with various types of attack scenarios. SLICOTs installed temporary forwarding rules

during the TCP handshaking process. It also installs permanent forwarding rules after

the validation of a request. Moreover, it blocked the attacker that generated a large

number of half-open TCP connections. One of the main benefits of SLICOTS was

that it did not interrupt other legitimate requests.

Tushar Ubale et al. [56] presented an SRL module for preventing the SYN

Flooding DDoS attack in the SDN environment. SRL installed permanent forwarding

for the requested connection and moved the user to the Whitelist as soon as the

handshake was completed. It did not install temporary rule during the process of TCP

handshakes like SLICOTS and OPERETTA. Moreover, SRL gave a chance to the

user if there is any interference in connection establishment. It also detected a

malicious user who firstly created the complete TCP handshake and then launches the

attack. As it was composed of two modules, hashing, and flow aggregator, it had the

specific advantages of each module. The first module could replace the flow rules

from the flow table according to the hash value's priority. As well as the second one

could block the malicious connection requests. Another advantage of SRL was that it

could detect slow rate DDoS attacks by limiting the TCP connection requests.

The connection-rate based mechanisms have been successfully used in some

of the experiment testing running on the various types of SDN controllers: NOX,

Floodlight, Baecon, and POX controller.

23

2.5.5 Integration of Traffic Monitoring Tool and OpenFlow

 There are various types of traffic monitoring tool and they are combined with

OpenFlow for implementing a more lightweight DDoS detection and mitigation

system by reducing the traffic monitoring overhead of the SDN controller. The widely

used tools are Snort, Bro, sFlow and iftop.

One of the most popular and widely used tools for both the network intrusion

detection system and network intrusion prevention system is SNORT. This tool has

been successfully used in the SDN-based detection mechanism together with a

standard OpenFlow protocol in SDN. Xing et al. [63] proposed an intrusion

prevention system based on the combination of OpenFlow protocol and snort

monitoring tool in the Xen-based cloud environment with the name of SnortFlow.

This system was feasible in a cloud system because of using the combination of two

useful functions such as the capability of intrusion detection and flexibility of network

reconfiguration.

Similarly, Tommy et al. [11] proposed a collaborative attack detection and

containment approach for defending the SYN flooding attack with the spoofed IP

address. In this approach, any new traffic has sent to not only the controller but also

the monitor. Snort was used for monitoring the traffic that has sent by the Open

vSwitch, and generating an alert when the traffic exceeds the predefined threshold

value. Correlator in controller processes for confirming the attack, finding the attack

location, and dropping the flow coming from the attack when getting the alert

message from the monitor.

Another famous traditional IDS, Bro has been used to monitor traffic as an

assistant in the SDN-based DDoS detection mechanism. Lukaseder et al. [36]

proposed a framework based on SDN and Bro monitoring tool for network security.

They split their DDoS mitigation system into three steps: detection, observation, and

mitigation. The first step determined whether the attack is ongoing or not. The second

one identified perpetrators of the ongoing attack by observing every connection with

the observer, Bro. The SDN controller blocks the attackers or redirects them to the

CAPTCHA server in the final step. As a result, this mitigation system can detect

attacks, identify the attackers, and mitigate the effects of the attack within minutes or

even seconds without optimization for the specific network infrastructure and mitigate

SYN, HTTP, and TLS flooding attacks with common off the shelf hardware, even in

24

high-speed networks. However, this system might redirect falsely the legitimate client

to the CAPTCHA server.

T. Lukaseder et al. [36] proposed a framework based on SDN and the Bro

Security Monitor that can mitigate attacks simply within the network infrastructure.

They provided a system that detects attacks, correctly identifies the attackers, and

mitigates the effect of the attack. The objective of this system is to be independent of

the affected services and to be used within general network infrastructures.

sFlow is a sampling technology embedded within the network equipment such

as routers and switches. It meets the main requirements of network traffic monitoring

solutions such as network-wide view, scalable, low-cost solution, and industry

standard. It has been widely used in SDN-based DDoS detection mechanisms. Lu et

al. [35] implemented an approach for defending the Botnet-based DDoS flooding

attack by using the combination of the advantages of SDN and sample flow (sFlow)

analyzer. It also used a detection algorithm based on a statistical inference model and

a response scheme that drops the attack with a source-based defense mechanism. This

method is simple, feasible, low-cost implementation and effective. Similarly,

Aizuddin et al. [1] proposed a mechanism for detection and mitigation of the DNS

amplification attack via sFlow with security-centric SDN. Giotis et al. [22] also

demonstrated the solution of the scalability problem in the SDN-based network by

using the combination of sFlow and OpenFlow.

Juan Wang [59] proposed LFADefender, a novel link-flooding attack (LFA)

defense system that leverages some key features of SDN, such as programmability,

network-wide view, and flow traceability, for the effective detection and mitigation of

LFA. In LFADefender, they proposed an LFA target link selection approach and

design an LFA congestion monitoring mechanism for detecting the LFA effectively.

Moreover, they described multiple optional paths rerouting method for the temporal

mitigation of links congestion caused by LFA. They also proposed a malicious traffic

blocking approach to completely mitigate LFA.

Chaitanya Buragohain et al. [10] proposed FlowTrApp, an SDN framework

for data centers that detects and mitigates the DDoS by using flow rate and flow

duration of flow. By using an SDN engine containing sFlow based flow analytics

engine sFlow-RT and an OpenFlow, it attempts for detecting attack traffic ranging

from low rate to high rate and long-lived to short-lived attacks controller. Their

proposed mechanism firstly matches an incoming flow with a legitimate sample of

25

traffic and then installs mitigation actions if a flow is found not lying in the bounds of

the legitimate traffic pattern. They used both of these technologies to enables the duty

sharing between the OpenFlow controller and the sFlow-RT application and towards

DDoS attack detection and mitigation which enhances the performance of

FlowTrApp.

Another traffic monitoring tool especially finding the bandwidth of incoming

packets and the address of the packet is iftop. It can be used in a DDoS detection

mechanism by evaluating the bandwidth of the incoming packets. Thomas et al. [53]

proposed a DDoS Detection mechanism by using third party applications in the SDN-

based network. This mechanism used iftop for collecting the traffic data to

differentiate the traffic is normal or malicious. If the bandwidth of the collected traffic

exceeds the defined threshold, the traffic will be assumed as malicious traffic. The

firewall application running in the SDN controller continued to handle the suspicious

traffic and the application drops the real malicious.

To provide continuity of services in a particular network, DDoS attack

mitigation mechanisms are needed as soon as the attack is detected. Without

mitigation capabilities, the effective detection mechanism will not be sufficient for

providing network service continuously. Therefore, DDoS mitigation mechanisms

with the capabilities of SDN are discussed in the next session.

2.6 SDN-based DDoS Attack Mitigation

 The main capabilities of SDN are improving the agility and flexibility of a

network. One of the features of SDN, logical centralized controlling of the network,

provides the visibility of the entire network from a global point of view by a

centralized SDN controller. Thus, the controller can configure the network

consistently and rapidly according to the requirements of network changing. As a

result, the SDN network can be mitigated effectively from DDoS attacks by using the

advantage of a centralized controller. As soon as the attacks are detected, the DDoS

attack mitigation application blocks the attack traffic by installing new flow rules into

the switches.

The common mitigation mechanisms in SDN networks are dropping packets,

blocking ports and redirecting traffic. Moreover, deep packet inspection, isolating

26

traffic and changing MAC and IP addresses are also used as the SDN-based DDoS

attack mitigation mechanism.

2.6.1 Drop Packet or Block Port

 The packet from network traffic can be dropped by installing flow rule with

drop action into the switch. But blocking port means the attacking port of the switch

are completely blocked. The two mitigation mechanisms are simple and fast in

blocking the attack traffic. However, they can be blocked legitimate traffic in case of

false attack detection or compromised legitimate hosts.

Depending on the deployment location, the defense mechanism for DDoS flooding

can be divided into three mechanisms: source-based defense mechanism, destination-

based defense mechanism, and hybrid defense mechanism.

2.6.1.1 Source-based Defense Mechanism

Source-based mechanisms are deployed near the sources of the attack to

prevent network customers from generating DDoS flooding attacks. These

mechanisms can take place at ingress switch connected to the attacker's host. The

advantage of this mechanism is for the reduction of wasting resources existing along

the path from source to destination.

2.6.1.2 Destination-based Defense Mechanism

In the destination-based defense mechanisms, detection and response are

mostly done at the destination of the attack (i.e., victim). These mechanisms can

closely observe the victim, model its behavior and detect any anomalies. Most of the

destination-based mechanisms cannot accurately detect and respond to the attack

before it reaches the victims and wastes resources on the paths to the victims; hence,

they are not capable of detecting and responding to the DDoS attack traffic properly.

2.6.1.3 Hybrid Defense Mechanism

Hybrid defense mechanisms usually place the attack detection modules near

the victims and execute packet filtering close to the attack sources. These mechanisms

only limit the rate of malicious packets and do not harm legitimate flows.

27

2.6.2 Redirection

 The redirection mechanism sends the detected attack packet to a new

destination such as deep packet inspection, or captcha that analyze and check the

packet in more detail. The main objective of this mechanism is to reduce the false

alarm rate by checking again the detected packet to ensure that whether the suspicious

packet is a real attack or not. Before redirecting to the new IP address, the mechanism

needs to tear down all the connection to the existing server or destination address so

that the bots cannot access the new destination directly. The drawback of this

mechanism is that the processing time might increase because of deeply checking the

packets.

L. Dridi et al. [19] proposed SDN-Guard, a novel mechanism that can protect

DoS attacks on the SDN network efficiently by dynamically rerouting potential attack

traffic, adjusting flow timeouts and aggregating flow rules. Their proposed system

was intended to reduce the overloading of the controller processing and

communication capacity and flood switch CAM tables, and upgrade the overall

network performance.

2.6.3 Control Bandwidth

This mechanism controls bandwidth at each switch interface for a specific host

or network. For example, it limits the bandwidth for the hosts that have been

compromised, and gives the full bandwidth for the benign hosts that have never been

infected. According to the proposed mechanism at [55], the authors divided the

mitigation methods into three levels: the first level with highest data or packet rate for

the detected attackers, the second level with a lower rate for the ongoing attackers,

and the last one with blocking all packets from the attackers.

2.6.4 Change Network Topology

This mechanism is very effective in DDoS mitigation over the SDN network.

The connection of the attack is torn down after the attack is detected. However, the

normal packets can be forwarded by using an alternate path.

28

2.7 Chapter Summary

The architecture of SDN and its two capabilities such as centralized control

the network logically and reprogrammed the switches at the data plane dynamically

make the natural choice for enhancing the network security, especially in DDoS

attack detection and mitigation. The above-mentioned SDN-based DDoS detection

and mitigation mechanisms clearly show that they are more flexible than traditional

mechanisms. However, each detection and mitigation mechanism has its advantages

and disadvantages. Among the mechanisms, the widely used one is a statistical

analysis-based change point detection mechanism.

There are two algorithms based on the Exponentially Weighted Moving

Average (EWMA) formula in this technique: adaptive threshold algorithm (ATA) and

cumulative sum (CUSUM) algorithm. A non-parametric CUSUM with an adaptive

threshold algorithm has been implemented to calculate the dynamic threshold for the

detection of DDoS attacks in [13]. They used CAIDA to define the initial threshold

value. Conti et al. [14] used the EWMA control chart to protect network

reconnaissance. But the proposed systems in [13-14] had a little overhead for the

collection and manipulation of traffic statistics in the SDN controller. Bawany et al.

[6] proposed a framework for the application-specific detection and mitigation of

DDoS attacks over the smart city data center by using a modified EWMA formula.

For reducing the overhead of traffic statistic in the SDN controller, the sFlow-RT

analyzer is used in this dissertation.

Siris et al. [52] investigated these two algorithms for SYN flooding attack

detection. The ATA is a simple and naive algorithm for detecting the high-intensity

attack. But this algorithm produced high false alarms. The false alarm's avoiding

method used in this algorithm affects the false negative rate. In order not to raise such

a false negative rate, the existing ATA is modified by encountering the baseline of the

network in the calculation of the dynamic threshold in this dissertation.

A. Arins proposed firewall as a service in SDN for solving the two main

problems of DDoS: distinguishing good packets from bad packets and dropping bad

packets at the closet point to attacker networks [3]. The authors in [43] also drop the

detected malicious packets as their mitigation mechanism is protecting the IoT-based

DDoS attack in SDN. Lu et al. focused on the source-based defense mechanism

against botnet-based DDoS flooding attacks through the combination of the power of

29

SDN and sFlow technology [35]. Conti et al. [14] also mitigated the flooding-based

DoS attack by installing the temporarily Drop flow rules. The authors of [60]

discussed the anomaly mitigation with the consideration of the centralized control

feature of the SDN network for tracing back the source of the attackers and doing the

source filtering at the source switch. All their proposed mitigation systems are

discarding the detected attack with the installation of a simple drop flow rule

according to the advantages of the centralized control feature of SDN.

In this dissertation, in order to mitigate the flooding attack effectively, drop

flow rules are installed with two options at the ingress switch of the attack.

Temporarily drop flow rules are installed for the attacks that come for the first time.

Permanent drop flow rules are installed when the same attacks come again after their

respective temporarily drop flow rule expires.

30

CHAPTER 3

BACKGROUND THEORY

This chapter will cover the theoretical descriptions of DDoS attack defensive

mechanisms using SDN. Thus, the first section explains in detail about SDN including

the architecture of SDN with its components and protocol, and the main function of

SDN, flow rule installation. The statistical data collection and change point detection

techniques for the detection mechanism and abnormal packets discarding for

mitigation mechanisms are also described in the next sections.

3.1 Software-Defined Networking

Open Network Foundation (ONF) defines that software-defined networking

(SDN) is the physical separation of the network control plane from the forwarding

plane, and where a control plane controls several devices [5].

3.1.1 Architecture of SDN

 The basic SDN architecture is shown in Figure 3.1 [73]. Generally, according

to the main concept of SDN, decoupling the logical control function and physical data

forwarding operation, it has two layers or planes: control plane, and infrastructure or

data plane. The logically centralized controller lies in the control plane, manages and

orchestrates the networking devices existing in the data plane depending on the type

of activating applications hosted on it. Thus, the classical SDN architecture consists of

an additional plane, application plane, occupied by an instance of applications. The

applications take the exchanging information of data plane via the controller for their

various types of processing. The networking devices are termed as switches in SDN,

but the switches can operate different functions in OSI's seven layers: from layer 4 up

to layer 7 according to the types of flow rules set up by the application.

The switches that can be used in SDN are responsible for matching the

incoming packet header with existing flow rules stored in the flow tables of the

switches, passing the header information of the first packet to the controller in case of

non-existing flow rule for it and updating the flow rules installed by a particular

application via the controller. The switch can be software switches such as Open

vSwitch, Cisco Nexus 1000v, VMware vSphere, NEC Hyper-V, and so on or

hardware switch such as Brocade, Cisco, HP, IBM, Juniper Networks, NEC, and so

31

on [23]. Among them, OVS (Open vSwitch) is the most commonly used switch in the

SDN network.

Figure 3.1 Basic SDN Architecture

The controller is the heart of the architecture of SDN and manages the flow

records in the flow tables of the switches by installing flow rules with different

actions for the network traffic reactively or proactively. Depending on the use of

different programming languages and environments, various types of SDN controllers

have been developed. For example, ONOS, Beacon, Open Daylight, and Floodlight

are based on Java, but ONOS is specially developed for a distributed architecture.

Similarly, NOX is based on C++ and Python, and POX and Pyretic are based on

Python [57].

There are two interfaces to interconnect between the planes of the SDN

architecture. They are North Bound Interface (NBI) and South Bound Interface (SBI).

The former is used to communicate the application plane and control plane, also

called applications-control plane interface (A-CPI) or intent interface. The latter one

interconnects between the control plane and data plane and is also referred to as a

data-controller plane interface (D-CPI). OpenFlow is the most commonly used

protocol in D-CPI or SBI. The other protocols such as sFlow and SNMP can also be

used to communicate between controller and networking devices but OpenFlow is the

standard protocol used in SDN.

32

3.1.1.1 OpenFlow Protocol

There are several standard protocols used in real applications of SDN.

OpenFlow is one of the standard protocols that can implement the SDN concept in

either software or hardware. It was proposed by Stanford as the standard of SDN

protocol. It is a flow-oriented protocol. Since the protocol is mainly used for

communication between the SDN switch and SDN controller, the presentation of this

protocol is described with the operation of the main components of OpenFlow

enabled switch as shown in Figure 3.2. An OpenFlow enabled switch has OpenFlow

port, OpenFlow table, OpenFlow channel, and OpenFlow switch protocol [65-66].

Figure 3.2 Main Components of OpenFlow Enabled Switch

OpenFlow ports are the network interfaces of the OpenFlow enabled switch

that pass the packets between internal OpenFlow processing and their connected

external network. Packets are received on an ingress port and forward them to the

output port after pipeline processing. The ingress port can be used in matching the

incoming packets with flow entries. The pipeline process can decide for sending the

packet on an output port according to the action that defined how to send back the

packet to the network.

An OpenFlow switch is needed to have at least one flow table or more. The

OpenFlow pipeline processing defines how the packets are sending among the flow

tables. The processing is simplest when the switch has only one flow table.

33

A flow table consists of one or more flow entries. The main components of a

flow entry are as shown in Table 3.1.

Table 3.1 Main Components of a Flow Entry

Match Fields Priority Counters Instructions Timeouts Cookie

The matching field contains ingress port and packet headers. Besides, it may

contain the optional metadata specified by a previous flow table. The function of the

fields is for matching against packets. The matching precedence of the flow entry is

defined in the priority field. The value of the counters field describes the up to date

number of matching packets with the flow entry. The instructions of a flow entry

define a set of instructions for the matched packets with the flow entry. The

instructions are getting from the specified actions and/ or pipeline processing such as

Goto-Table next-table-id. The most commonly used and required actions are:

1) Output: The action forwards a packet to a specified OpenFlow port connected

to its destination.

2) Drop: The packets matched the flow entry with no output port action will be

dropped. On the other hand, the flow entry can be specified with drop action.

For example, the attack packet can be discarded with the flow rule or entry

with drop action.

3) Group: The action processes the packet according to the specified group

buckets. For example, the group action may be the combination of two output

port actions: To Controller and To destination port to send the packet to both

the controller and its destination concurrently.

The OpenFlow secure channel is used to make the interconnection between

the OpenFlow switch and the OpenFlow controller. A typical OpenFlow controller

manages OpenFlow switch by exchanging OpenFlow messages between them. Since

it controls all of the OpenFlow switches over the whole network, it has many

OpenFlow channels for every single connection between each switch and controller.

However, each switch may have one OpenFlow channel to a single controller or

multiple channels connected with different controllers for reliability purposes. The

controller usually manages the switches remotely over one or more networks. The

OpenFlow channel is usually created by initiating a single connection between

OpenFlow switch and OpenFlow controller with Transport Layer Support (TLS) or

34

plain TCP. However, the channel may be created with multiple connections for

achieving parallelism. The channel must be initiated by OpenFlow switch to be able

to get a connection with the OpenFlow controller. But, in some cases, the OpenFlow

switch may allow the controller to initiate the connection. To prevent unauthorized

connections, such an OpenFlow switch should control itself to have a secure

connection.

The core of the OpenFlow switch specification is the structure of the

OpenFlow Switch Protocol messages. The OpenFlow protocol is implemented by

using OpenFlow messages transmitted over the OpenFlow secure channel. Each

message has its structure starting with the common OpenFlow header and includes the

other structures that may be common to multiple message types. Each structure

defines the order in which information is included in the message and may contain

other structures, values, enumerations or bitmasks [30,57].

3.1.1.2 Open vSwitch

Open vSwitch (OVS) is one of the most popular, software-driven OpenFlow

switches. It is a multilayer software switch under the open-source Apache 2 license.

Its kernel is written in Linux 3.3 and its firmware including Pica8 and Indigo. Open

vSwitch is used in multiple products and runs in many large production environments.

It is the default switch in XenServer 6.0, the Xen Cloud Platform and also supports

Xen, KVM, Proxmox VE, and VirtualBox. It has also been integrated into many

virtual management systems including OpenStack, openQRM, OpenNebula, and

oVirt. The kernel datapath is distributed with Linux, and packages are available for

Ubuntu, Debian, Fedora, and OpenSUSE. Open vSwitch is also supported on

FreeBSD and NetBSD. The Open vSwitch release in development has been ported to

DPDK. Open vSwitch can operate both as a soft switch running within the hypervisor,

and as the control stack for switching silicon. It has been ported to multiple

virtualization platforms and switching chipsets.

The main part of the code is written in platform-independent C and is easily

ported to other environments. The current release of Open vSwitch supports the

following features: standard 802.1Q VLAN model with trunk and access ports, NIC

bonding with or without LACP on upstream switch, NetFlow, sFlow(R), and

mirroring for increased visibility, QoS (Quality of Service) configuration, plus

35

policing, Geneve, GRE, VXLAN, STT, and LISP tunneling, 802.1ag connectivity

fault management, OpenFlow 1.0 plus numerous extensions, transactional

configuration database with C and Python bindings, and high-performance forwarding

using a Linux kernel module.

As shown in Figure 3.3, the above-mentioned Open vSwitch's features can be

categorized into four main groups: security, monitoring, Quality of Service (QoS),

and automated control. As one of the security features, VLAN isolation can be used to

enforce VLAN membership of a VM without having the knowledge of the guest

itself. Another security feature is tunneling that provides isolation and reduces

dependencies on the physical network. As a monitor feature, visibility supports

industry-standard technology to monitor the usage of a network by using one of the

monitoring tools or traffic analyzers such as sFlow, NetFlow, and port mirroring. As a

QoS feature, the traffic rate can be limited by not only the existing traffic control layer

such as the policer for ingress rate limiter but also the Open Flow controller to select

traffic class for each virtual machine. Open vSwitch supports a database for storing

network state (OVSDB) that supports remote triggers. Therefore, a piece of

orchestration software can "watch" various conditions of the network and respond

if/when they change. Open vSwitch supports OpenFlow to be able to export remote

access for controlling traffic. Open vSwitch is used in many areas including global

network discovery through inspection of discovery or link-state traffic (e.g. LLDP,

CDP, OSPF, etc.).

The main components and available tools provided in an Open vSwitch are

ovs-vswitchd, ovsdb-server, ovs-dpctl, ovs-vsctl, ovs-appctl, ovs-ofctl, and ovs-pki.

The ovs-ofctl tool is the most commonly used tool in the SDN network for querying

and controlling OpenFlow switches and controllers [66].

3.1.1.3 Controller (Open Network Operating System – ONOS)

The controller is the main part of an SDN network since the whole operations

of the entire network are managed by a single centralized controller or more than one

distributed controller. There are various types of SDN controllers that have developed

for the SDN network. They are implemented with different programming languages

such as Java, and python.

The first open-source network operating system aiming for Service Provider

and mission-critical networks is the Open Network Operating System (ONOS). It has

36

been built to provide high availability, scalability, and performance according to the

demands of these networks. Moreover, to develop application easily, and be able to

control both OpenFlow-enabled and legacy devices, ONOS has created useful

Northbound and Southbound abstractions and interfaces respectively. Therefore,

ONOS provides carrier-grade features including scalability, availability, and

performance via web-based control plane helps in migrating black boxes-based

existing networks to white boxes-based SDN networks and reduces Capability

expenditure (CapEx) and Operational Expenditure (OpEx) for service providers. To

validate its architecture with real-world use cases, ONOS has been developed in

concert with demanding network vendors, leading service providers, research and

education network operators, collaborators, and ONF.

In addition, as ONOS is an operating system that manages network resources,

provides APIs and abstractions for programming, monitoring, managing network

devices used in the data plane, it immensely simplifies the creation of effective and

innovative network applications operated over a variety of hardware. There are many

open-source SDN controllers such as POX, Beacon, SNAC, and NOX that have been

developed by collaborators at Stanford, Berkeley, and Nicira Networks. However,

these controllers were not intending to design for the foundation of commercial

products, providing scalability, high availability and performance features, and having

general abstractions for every kind of device. Moreover, since they just exchanged

OpenFlow messages between OpenFlow switches and controller directly, they are

more like the drivers of the devices. Therefore, they are not developed as a complete

SDN platform including key features of the ONOS controller like scalability, high

availability, and performance.

Since the architecture of ONOS has been designed specifically for the service

provider, it considered the key features needed by the service provider network: high

availability, scalability, and performance together with two types of interfaces:

southbound and northbound.

The key features provided by ONOS controller are:

Distributed Core is the key architectural feature that provides scalability, high

availability, and performance as it brings carrier-grade features to the control plane of

SDN. The obvious function of ONOS, clustering that brings the web style agility to

the control plane of SDN and service provider networks.

37

Northbound abstraction/APIs that include two types of abstractions: intent

framework and global network overview. The first abstraction allows the application

for requesting service from the network without knowing how the service will be

performed. The second abstraction provides the application with a view of the

network as a network graph. By reviewing these abstractions, this northbound API

insulates the application from the detail of the networks that are needed by the

application to increase application development velocity and allowing network

changes without application downtime.

Southbound abstraction/APIs allow plug-ins for various southbound protocols

and devices. The devices may include both OpenFlow-enabled and legacy devices.

The benefit of this abstraction is the insulation of the core of ONOS from the details

of different devices and protocols, and migration of the existing legacy devices to

white boxes supporting OpenFlow.

Software Modularity makes it easy to develop, debug, maintain, and extend,

and customize ONOS as a software system by a community of developers and by the

providers [7].

3.1.2 Flow Rule Installation in SDN

There are three modes of operation when using OpenFlow to populate TCAM

in switches: reactive flow instantiation, proactive flow instantiation, and hybrid flow

instantiation.

3.1.2.1 Reactive Flow Instantiation

When a switch receives a packet that cannot be matched to any installed flow

rule, the switch normally first buffers the packet and then sends a request to get a new

flow rule from the controller with an OFPT PACKET IN message. This message

includes the header field of the data packet. The controller then replies with an OFPT

FLOW MOD message, comprising the action to be performed on the data packet and

the duration for which to maintain the flow rule in its flow table. This duration is

called a timeout. Each flow rule has two associated timeout values, an idle timeout

value, a soft timeout, which is initiated when the flow remains inactive, and a hard

timeout, which is initiated at the timer expiry. When either of these timers expires, the

switch eliminates the corresponding flow entry from its flow table and sends an OFPT

FLOW REMOVED message to the controller. Moreover, the flow rule can be

38

installed temporarily or permanently. Temporary flow rules expiration is depending

on the predefined timeout value while the permanent ones are never eliminated from

the flow table. Since rules are requested by the switch only upon receiving data

packets, this mechanism of flow rule installation is "reactive" [9] as shown in Figure

3.3 [36].

Figure 3.3 Installation of Reactive Flow Rule in OpenFlow

3.1.2.2 Proactive Flow Instantiation

OpenFlow controller could populate the flow tables before all traffic coming

into the switch for matching with the flow rules. By pre-defining all of the flows and

actions in the switch’s flow tables, the packet-in event never occurs. As a

consequence, all packets are forwarded after looking up the flow rules in the switch’s

flow tables. Thus, proactive OpenFlow flow tables eliminate any latency made by

consulting a controller on every flow.

3.1.2.3 Hybrid Flow Instantiation

A combination of the reactive and proactive flow rule installation allows not

only the flexibility of reactive forwarding the packets but also preserving low-latency

forwarding [9].

3.2 SDN-based DDoS Attack Detection Scheme

Statistical schemes are used to solve the DDoS Detection problem. There are

two main reasons for choosing to use a statistical methodology. The first reason is that

39

it provides a sound statistical background that can be easily evaluated and also is

simple to implement and understand. The second one is that although statistical

approaches have been around for a long time, they still provide a safe starting point,

and are both computationally efficient and computationally effective [12].

In general, the functions of the statistical analysis method are collecting the

network traffic statistic, comparing the collected statistic with a threshold value, and

raising alert for the threshold violation. In the SDN network, the statistics of traffic

can be collected by the SDN controller itself or using the help of a particular third-

party analysis tool such as a sFlow-RT analyzer. The former method might be

overloaded by the SDN controller. Thus, the latter method is commonly used in the

collection of traffic statistics.

After getting the statistic of the traffic, the next operation of statistical analysis

is to compare the traffic statistic with a threshold value. Thus, a threshold value can

be defined statically or dynamically. The static threshold produces a high number of

false alarms and a tedious job for the network administrator. Hence, the dynamic

threshold is the most commonly used in statistical analysis techniques. The change

point detection technique is simple to implement for calculating the dynamic

threshold.

3.2.1 Packet Statistic with sFlow-RT analyzer in SDN

Software-defined networking (SDN) separates the network Data Plane and

Control Plane, permitting external software to monitor and control network resources.

Open Southbound APIs like sFlow and OpenFlow are an essential part of this

separation, connecting network devices to external controllers, which in turn present

high-level, Open Northbound APIs to SDN applications.

40

Figure 3.4 SDN Architecture with sFlow-RT Analyzer

One of the unique features of sFlow is its ability to monitor entire networks,

not just selected devices or links. When configuring sFlow monitoring, enable sFlow

on every switch port on every switch in the network. sFlow is implemented in

hardware so it can operate at line rate without impacting switch performance [44].

3.2.1.1 Sampling

Packet-based sampling mechanisms are commonly used to characterize

network traffic. To prevent synchronization with any periodic patterns in the traffic,

packet sampling uses randomness in the sampling process. On average, it captures and

analyzes 1 in every N packets.

Although this type of packet sampling does not provide a 100% accurate

result, it does provide a result with quantifiable accuracy [46].

Table 3.2 Suggested Values for Sampling Rates

Link Speed Sampling Rate

10Mb/s 1 in 200

100Mb/s 1 in 500

1Gb/s 1 in 1000

10Gb/s 1 in 2000

41

An important part of configuring sFlow on a switch is selecting a suitable

packet sampling rate. The suggested values that should work well for general traffic

monitoring in most networks are listed in Table 3.2. However, the sampling rate may

be decreased if traffic levels are unusually high (e.g. use 1 in 5000 instead of 1 in

2000 for 10Gb/s links).

For getting the full visibility of the network, flow monitoring is needed to

configure on all interfaces on the switch connected in the network. To monitor all the

interfaces with very little overhead, packet sampling can be implemented in hardware

[45].

3.2.1.2 Polling

Configure the interval (in seconds) that the device waits between port statistics

update messages. Polling refers to the device gathering various statistics for the

network interfaces configured for sFlow monitoring and exporting the statistics to the

configured sFlow collector [44].

To track accurately link utilization, a suitable counter polling interval is

needed to select. In general, the polling interval should be set to export counters at

least twice as often as the data will be reported according to the Nyquist-Shannon

sampling theory. For example, for trending the utilization with minute, the polling

interval of between 20 and 30 seconds should be selected. Setting the relatively short

polling intervals could not be a problem because the counter polling with sFlow is

very efficient, allowing more frequent polling with less overhead than is possible with

SNMP [74].

3.2.2 Change Point Detection Algorithms

One of the effective algorithms for calculating the dynamic threshold is ATA

[52]. In this section, both algorithms (i.e. original ATA and modified ATA) are

described with their respective false alarm avoiding method.

EWMA is commonly used in finding the dynamic threshold for the network

traffic. The calculated threshold value provides not only high detection rate but also

high false positive rate. Thus, ATA uses the twice of the EWMA result or more as its

threshold value. However, it still raises some false alarms in some cases. In order to

42

reduce false alarms, this algorithm only raises the alarm signal after a minimum

number of consecutive violations of the threshold.

3.2.2.1 Adaptive Threshold Algorithm (ATA)

Let CFt be the current number of incoming frames at time t , PFt−1 is the

average number of frames estimated from the measurement prior to t. The initial

value of PF is defined as 0. This initial value is used as the value of PFt−1 for the

very first calculation.

EWMA formula is used to pre-calculate the average number of incoming

frames that will be used in the comparison for the next second as shown in Equation

3.1:

 PFt = αPFt−1 + (1 − α)CFt (3. 1)

α is the factor parameter, 0 ≤ α ≤ 1 , used in making the decision of the

factors of current number of frames and average number of previous frames for

calculating the average number of previous frames to be used at the next calculation.

If CFt ≥ (p + 1)PFt−1 then the alarm signaled at time t. (3. 2)

The percentage parameter p is the percentage parameter, p > 0. It is used to

indicate the anomalous behavior when the defined percentage of the previous average

number of frames is exceeded by the current number of incoming frames.

Applying the algorithm directly would yield a high number of false alarms.

Thus, a simple modification is made to signal an alarm after a minimum number of

consecutive violations of the threshold as shown in Equation 3.3:

If ∑ 1{CFi ≥(α+1)PFi−1} ≥ kn
i=n−k+1 then the alarm signaled at

time t.

(3. 3)

In this equation, k is the parameter that indicates the number of consecutive

intervals the threshold must be violated for alarm to be raised, k > 1.

43

3.2.2.2 Modified Adaptive Threshold Algorithm (MATA)

For reducing the false negative value while avoiding the false alarms, MATA

is taken into account the baseline traffic, b, in the traffic comparison. Thus, the value

for the baseline traffic is needed to define at the initial state.

The baseline of a network can be identified by analyzing the monitoring result

of the network for a period of time. In this system, the sFlow analyzer is used as the

monitoring tool and the monitoring result (i.e. the event information) is analyzed for

defining the value of the baseline. The process of defining baseline can be divided

into four steps:

Step 1: Collect all event information from the various types of service produced by

the analyzer.

Step 2: Categorize the collected information according to their type of service (i.e.

Web, FTP, Mail, NTP, DHCP and DNS).

Step 3: Find the maximum number of frames per second for each type of service from

the collected event information.

Step 4: Define the maximum number of frames per second as the value of the

baseline.

According to the step 3 and 4, the baseline traffic for web service is defined as

the maximum number of SYN frames per second from the web event information

produced by the sFlow analyzer as shown in Equation 3.4.

bweb = Max(number of SYN frames per second for web service) (3. 4)

Similar to the web service, the baseline traffic of other TCP services such as

FTP, and mail are identified. For the UDP services, the baseline traffic for the DNS

service is identified as the maximum number of frames per second from the DNS

event information as shown in Equation 3.5.

bDNS = Max(number of frames per second for DNS service) (3. 5)

The baseline traffic of the NTP and DHCP services are similarly identified as

the baseline definition of DNS service.

Thus, in general, the baseline of a particular service, bSV ,is identified as the

maximum number of frames per second for the service, Max(nSV) ,as shown in

Equation 3.6.

44

bSV = Max(nSV) (3. 6)

In the Equation 3.6, b is the baseline traffic parameter, SV is represented for a

particular service, n is the number of frames per second containing in the event

information. The calculation of baseline traffic over an emulated SDN network

environment is described in detail in section 5.2.2.

After getting the baseline value, the initial value of PF is defined as the value

of bSV. The initial threshold value is also identified as the value of bSV. Thus, the

initial number of incoming frames is compared with the initial threshold value. Then,

the new threshold value is calculated and compared with the number of incoming

traffic in the next second by using the Equations 3.7 and 3.8.

As the original ATA, the average number of incoming frames for the next

second is pre-calculated by using the EWMA formula as shown in Equation 3.1 of

session 3.2.2.1.

 PFt = αPFt−1 + (1 − α)CFt (3. 7)

Moreover, the Equation 3.2 of ATA is modified by adding the baseline traffic

parameter, bSV , for indicating the anomalous behaviour when the total number of the

defined percentage of the average number of previous frames and the number of

frames of the baseline traffic is exceeded by the current number of incoming frames.

The modified equation is shown in Equation 3.8:

If CFt ≥ (p + 1)PFt−1 + 𝐛𝐒𝐕 then the alarm signaled at time t. (3. 8)

3.3 SDN-based DDoS Attack Mitigation Scheme

In the process of DDoS attacks mitigation, the first function is finding the

source of the attack or the location of the attacker and then mitigating the attack

which is the malicious traffic. The vast advantage of OpenFlow is obvious in attack

mitigation because OpenFlow is tightly related to the forwarding function of any

network component. New network traffic flows are passed on to the OpenFlow switch

flow table, along with a specific action. The most commonly used actions are Drop,

Modify-field, and Forward actions [66]. Forward action is used in benign flow entry

for forwarding the flow to its destination. Drop action is attached to each attack flow

to block the malicious traffic.

45

Moreover, each different action can use predefined priority values. A low

priority value is assigned to flow-entries that are intended to forward packets matched

to them. On the other hand, a higher priority value is assigned to flow-entries for

dropping the packets. Thus, a drop flow rule will permanently take precedence against

a forwarding one.

Another mitigation method is controlling the incoming flows with the priority

of queuing or metering. The flow comes from the hosts that have a history of the

attacker or showing suspicious behaviors are put into ‘warning queue' with a low

priority value and are processed after handling all other requests in ‘normal queue'

with a high priority [14]. By using this mechanism, the malicious traffic can be

mitigated in the SDN network.

3.4 Performance Evaluation in Network Security

The confusion matrix is widely used as an assessment of the classification

method in network security. The matrix is shown in Table 3.3 [13].

Table 3.3 Confusion Matrix

Confusion Matrix Predicted Label

Normal Attack

Actual Label Normal True Negative (TN) False Positive (FP)

Attack False Negative (FN) True Positive (TP)

In order to calculate False Negative Rate (FNR), i.e. the percentage of

abnormal incorrectly identified as normal over the entire abnormal traffic, the

Detection Rate (DR), i.e. the percentage of correctly identified abnormal traffic over

the actual entire abnormal traffic, and Accuracy (ACC), i.e the percentage of correct

detection over all traffic detection, we use the formulas as in Equations 3.9, 3.10, and

3.11, respectively.

FNR(%) =

FN

FN + TP
 ∗ 100

(3. 9)

DR(%) =

TP

TP + FN
 ∗ 100

(3. 10)

46

ACC(%) =

TP + TN

TP + TN + FP + FN
∗ 100

(3. 11)

3.5. Chapter Summary

This chapter described the background theories related to the whole flooding

attack detection and mitigation system over the SDN network infrastructure. Thus, it

contained the detailed description of the SDN and SDN-based DDoS detection and

mitigation schemes. Moreover, the performance evaluation for network security is

also presented for the final evaluation of this system.

47

CHAPTER 4

FLOODING ATTACK DETECTION AND MITIGATION

SYSTEM

The overall system architecture for the detection and mitigation of flooding

attack is firstly described in this chapter. Then, the detailed architecture is separately

described for each part of this system.

 4.1 Architecture of Flooding Attack Detection and Mitigation System

The overall architecture of flooding attack detection and mitigation system is

composed of two main phases: flooding attack detection, and mitigation of the

detected attacks as shown in Figure 1. In the detection phase, the various types of

frames from the SDN hosts incoming into the Open vSwitch are collected and

detected by sFlow-RT analyser [75] in order to differentiate the normal frames and

the malicious frames of the flooding attack. If the malicious flooding frames are

incoming into the switches, then the analyser produces abnormal event information.

The mitigation application running in ONOS controller [76] instantaneously discards

the frames when it receives the event information from the analyser.

Figure 4.1 Overall Architecture of Flooding Attack Detection and Mitigation

4.1.1 Detection Phase

The flooding attack detection phase is implemented by using the sFlow-RT

analyzer to reduce the load of traffic statistics in the SDN controller. It is composed of

three parts: flow definition, flow handling, and event handling. The detailed

architecture of the detection phase is as shown in Figure 4.2.

48

Figure 4.2 Detection Process in sFlow-RT Analyzer

4.1.1.1 Flow Definition

The analyzer collects the incoming flow of each service according to the

predefined polling interval. As this system is detecting the flooding attack at the

transport layer, it has two types of flow definitions for TCP and UDP protocols. For

TCP protocol, the analyzer only collects SYN frames from the incoming TCP traffic

of the WeB, FTP, and mail server by using 𝑠𝑒𝑡𝐹𝑙𝑜𝑤 function with the flow keys

represented for the source MAC, destination MAC, source IP, destination IP, and

destination port. Moreover, in order to obtain solely SYN frames for the individual

service, the analyzer filters the flows with the respective destination port (i.e. 80 for

Web, 20 for FTP, and 25 for mail) and the TCP flag for that frames, 000000010.

Similarly, for UDP protocol, the analyzer collects all frames from a particular

incoming UDP traffic of DNS, DHCP, and NTP server with the flow keys for

representing source MAC, destination MAC, source IP, destination IP, and destination

port, and filtering with the respective destination port (i.e. 53 for DNS, 67 for DHCP,

and 123 for NTP) for obtaining separated traffic flow for each service.

4.1.1.2 Flow Handling

The analyzer handles the various types of incoming flows in every second. It

also controls the time of handling for each service to handle every flows incoming

from the various types of service alternatively. The process of flow handling function

49

as shown in the algorithm 4.1 can be sub-divided into three parts: initialization, frame

comparing, and new threshold calculation.

1) Initialization: The initial value for baseline and threshold is predefined as the

baseline traffic of the respective service for MATA as shown in the step 1 of

the algorithm 4.1. For ATA, the initial value of threshold and the average

number of previous frames is 0. Moreover, the factor parameter of the EWMA

formula, alpha (i.e α), is defined as 0.1 in order to receive abnormal event

information as quickly as the attacker is launching the attack. For doubling the

average number of previous frames, the value of p is defined as 1 aiming for

avoiding the false alarms.

2) Frame comparing: The sFlow analyzer compares the number of incoming

frames with the respective dynamic and adaptive threshold value calculated in

the previous second according to the step 2 of the algorithm 4.1. In the

beginning of the frame comparing (i.e. t = 0s), the analyzer compares the

number of frames with the predefined initial threshold.

3) New threshold calculation: The number of incoming SYN frames collected

from the flow definition is counted by the analyzer for each TCP service as

shown in the step 3 of the algorithm 4.1. Similarly, the analyzer counts the

number of all incoming frames from the respective UDP flow definition for

each UDP service. After counting the number of frames, the average number

of previous frames for the next second is calculated by using Equation 3.7 of

the MATA, EWMA formula, as described in the step 5 of the algorithm 4.1.

Then the new threshold value is calculated by taking the combination of the

twice of the EWMA result and the baseline by using Equation 3.8 of MATA

according to the step 6 of the algorithm 4.1.

After calculating them, the old threshold is replaced by the new threshold as

presented in the step 7 of the algorithm 4.1. Moreover, the old average number of

previous frames is also replaced by the current average number of previous ones as

shown in the step 8 of the algorithm 4.1.

50

Algorithm 4.1 MATA in sFlow Analyzer

Input: Collected sampled flow from the flow definition: 𝑓𝑙𝑜𝑤,

Observed the baseline traffic info of the current network infrastructure:

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑓𝑟𝑎𝑚𝑒;

Output: Abnormal event information: 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙

Step 1: Set the initialized value:

𝑃𝐹𝑡−1 ← 0; 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑓𝑟𝑎𝑚𝑒;

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ← 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑓𝑟𝑎𝑚𝑒; 𝛼 ← 0.1; 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ← 1;

Step 2: Compare the number of frame with the threshold value:

𝑠𝑒𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(′𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙′, {𝑚𝑒𝑡𝑟𝑖𝑐: ′𝑓𝑙𝑜𝑤, 𝑣𝑎𝑙𝑢𝑒: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,

𝑏𝑦𝐹𝑙𝑜𝑤: 𝑡𝑟𝑢𝑒, 𝑡𝑖𝑚𝑒𝑜𝑢𝑡: 1});
Step 3: Count the number of frame from the flows:

𝑓𝑙𝑜𝑤𝐶𝑜𝑢𝑛𝑡 ← 𝐶𝑜𝑢𝑛𝑡(𝑓𝑙𝑜𝑤);

Step 4: Calculate the number of frame per second:

𝐶𝐹𝑡 ← 𝐶𝑎𝑙𝐹𝑟𝑎𝑚𝑒𝑃𝑒𝑟𝑆𝑒𝑐(𝑓𝑙𝑜𝑤𝐶𝑜𝑢𝑛𝑡);

Step 5: Calculate the average number of frames:

𝑃𝐹𝑡 ← 𝛼 𝑃𝐹𝑡−1 + (1 − 𝛼)𝐶𝐹𝑡;

Step 6: Calculate the new threshold value:

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑛𝑒𝑤 ← ((𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 + 1) ∗ 𝑃𝐹𝑡) + 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒;

Step 7: Storing the current EWMA result to use as an average no. of previous traffic

in calculating another EWMA value for the next second:

𝑃𝐹𝑡−1 ← 𝑃𝐹𝑡;

Step 8: Replace the new calculated threshold to the threshold value for the next

second:

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑛𝑒𝑤;

Step 9: End

4.1.1.3 Event Handling

According to the frame comparing function, once the threshold is violated by

the number of incoming frames, the 𝑠𝑒𝑡𝐸𝑣𝑒𝑛𝑡𝐻𝑎𝑛𝑑𝑙𝑒𝑟 function in sFlow analyser

produces the alerts for indicating that the abnormal event is occurring in the network.

51

4.1.2 Mitigation Phase

The 𝑑𝑑𝑜𝑠𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 application running in the ONOS controller periodically

takes the abnormal event information from the sFlow analyzer via REST API in every

second. In this mitigation phase, MATA and ATA operate in a different way over the

event information from the sFlow analyzer because the analyzer produced the

different abnormal event information in the detection phase. The detailed architecture

of the mitigation phase is as shown in Figure 4.3. There are four main parts in the

mitigation phase: getting event information from sFlow, finding the source switch

attached to the attacker host, checking the drop flow rule already installed for the

current event, and installation of flow rule with drop action.

1) Getting event information from sFlow: The 𝒅𝒅𝒐𝒔𝒎𝒊𝒕𝒊𝒈𝒂𝒕𝒊𝒐𝒏 application

takes the event information from the sFlow analyzer periodically via the URL

such as “𝒉𝒕𝒕𝒑://𝟏𝟐𝟕. 𝟎. 𝟎. 𝟏: 𝟖𝟎𝟎𝟖/𝒆𝒗𝒆𝒏𝒕𝒔/𝒋𝒔𝒐𝒏”.

2) Finding the source switch attached to the attacker host: In order to get the

attacker host, the source MAC address is extracted from the taken JSON file

information. Then, find the source 𝑯𝒐𝒔𝒕𝑰𝑫 , source 𝑯𝒐𝒔𝒕 , and source

𝑫𝒆𝒗𝒊𝒄𝒆𝑰𝒅 via the source MAC address for getting the source switch ID

attached to the attacker host.

3) Checking the drop flow rule already installed for the current event: This

sub-session is to avoid installing drop flow frequently for the same event

information as the 𝒅𝒅𝒐𝒔𝒎𝒊𝒕𝒊𝒈𝒂𝒕𝒊𝒐𝒏 application receives the information in

every second. Moreover, the application aims to install temporarily drop flow

rule for the first-time abnormal events and a permanent one for the frequent

abnormal events. Thus, it controls the incoming events and installed drop flow

rules by using the timestamp value. If the same event information is received

again by the application after one minute from the time of installing drop flow

for it, the application will install the permanent drop flow rule for it.

4) Installation of Flow Rule with Drop Action: In order to install a flow rule in

the SDN application, it needs first to define the source and destination point of

the flow, the action for the flow, the switch ID, and the priority, and the type

of the flow (i.e. temporary or permanent). Thus, the 𝒅𝒅𝒐𝒔𝒎𝒊𝒕𝒊𝒈𝒂𝒕𝒊𝒐𝒏

application extracts the source IP and destination IP from the event

information. Then, the application installs drop flow rule into the source

52

Device ID with the drop action and the higher priority than the other normal

flow rules with a particular type of flow.

Figure 4.3 Mitigation Process in 𝒅𝒅𝒐𝒔𝒎𝒊𝒕𝒊𝒈𝒂𝒕𝒊𝒐𝒏 Application

 4.1.2.1 MATA–based Mitigation

As soon as the 𝑑𝑑𝑜𝑠𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 application receives the information, it first

extracts the source and destination IP address from the information and finds the

source switch connected with the attacker host by using the source IP address. Then,

the application installs temporarily drop flow rule for 60 seconds into the source

switch of the attack for discarding the flooding packets at the nearest point to the

attacker host. If the application receives again the previous event information when

the flow rule has been expired, it installs permanent drop flow rules for such event

information.

4.1.2.2 ATA–based Mitigation

The ATA-based 𝑑𝑑𝑜𝑠𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 application does not discard any frames as

soon as it receives the event information from the analyzer. It firstly confirms whether

the received event information is signaled the attacks or not because some information

might be the false alarms. In order to define the event formation that is not false

alarms, the algorithm predefines the number of consecutive threshold violation within

a time for each service.

53

The application monitors and counts the number of consecutive event

information within a predefined time and compares the number of information with

the predefined value. If the predefined value is exceeded by the number of

information, then it finds the source switch connected with the attacker host. Finally,

the application installs the drop flow rule into the source switch of the attack.

4.2 Chapter Summary

This chapter described not only the overall system architecture of flooding

attack detection and mitigation but also the sub-components of it in detail. Moreover,

it presented the workflow of the algorithms for each service separately with the

procedure and flowchart. This chapter also described specifically for the detection and

mitigation system with MATA and ATA algorithms.

54

CHAPTER 5

IMPLEMENTATION AND EVALUATION OF FLOODING

ATTACK DETECTION AND MITIGATION

In this chapter, the implementation and evaluating of flooding attack detection

and mitigation system is described with the experimental testbed design, and

experimental results produced from the two scenarios depending on the types of

flooding attack: specific SYN flooding attack, and overall flooding attacks. Moreover,

it also presents the design of experimental testbed with hardware and software

specifications.

5.1 Experimental Testbed Design

For assessing the flooding attack detection and mitigation over the SDN

network infrastructure, the experimental testbed is designed as shown in Figure 5.1.

According to the three-layer architecture of the SDN network, this system is

composed of a network topology emulated by mininet as a data forwarding layer,

ONOS controller as a control layer, and 𝑑𝑑𝑜𝑠𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 application activating at the

application layer. In order to collect and analyze all the traffic passing through the

whole SDN network, this system uses the sFlow-RT analyzer. sFlow datagram

connection is for carrying the sample packets between sFlow analyzer and the

network. The abnormal event information of the sFlow analyzer can be extracted via

the REST API from the ddosmitigation application running in the ONOS controller.

OpenFlow connection is interconnected between controller and mininet for

discovering the topology and installing flow rules into the switches.

Figure 5.1 Experimental Testbed Design

55

Two laptop PCs are used in implementing the testbed. ONOS controller and

sFlow-RT analyzer are running on PC1 and the mininet network is running on PC2.

The two PCs are connected by an Ethernet cable. The hardware specifications are

listed in Table 5.1. The software version information is also presented in Table 5.2.

Since the analyzer is directly connected to the mininet emulator by using peer

to peer connection, the sampling rate is set to 1 in 1 packet and the polling interval is

specified for one second in the sFlow analyzer.

Table 5.1 Hardware Information for Experimental Testbed

Parameters Descriptions for PC1 Descriptions for PC2

CPU Core i7- 4500U CPU @

1.80GHz, 64 bits

Core i5-3210M CPU @2.50GHz x

4, 64 bits

RAM 8 GB 4 GB

OS Linux Ubuntu Desktop 16.04LTS Linux Ubuntu Desktop 16.04LTS

Table 5.2 Software Information for Experimental Testbed

Parameters Descriptions

ONOS 1.8 (Ibis)

sFlow-rt 2.0-r1 121

Mininet 2.2.1

Open vSwitch 2.9.2

OpenFlow 1.3

5.2 Experimental Results

Two scenarios are used to produce the various types of experimental results

for comparing the ATA-based with the MATA-based flooding attack detection and

mitigation system. Firstly, this system is evaluated over the SYN flooding attack as

the scenario 1. Then, the various types of flooding attack are assessed in the scenario

2.

5.2.1 Scenario 1: SYN Flooding Attack Detection and Mitigation

SYN flooding attack detection and mitigation are tested and implemented over

the network running only web server. Thus, web traffic is solely generated and

analyzed on the virtual environment in this part of the system. Since EWMA formula

56

is included in both ATA and MATA, the factor parameter 𝛼 value is defined as 0.5

for taking an equal factor of the current number of SYN frames and the previous

average one, and the value for percentage parameter 𝑝 is assigned as 1 in order to

double the previous average number of SYN frames. The value of baseline parameter

𝑏 in MATA is defined as 150 for the current network topology. In order to get the

value for baseline of the network, we observed the network for three times of five

minutes while all normal hosts are accessing the server, and chose the maximum

number of SYN frames. The value of each parameter is listed in Table 5.3.

Table 5.3 Parameter Setting for MATA

Parameter Value

Factor 𝛼 0.5

Percentage 𝑝 1

Baseline 𝑏 150 frames

For MATA, the 𝑑𝑑𝑜𝑠𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 application installs drop flow rule as soon

as the event information is received because the algorithm avoids false alarms in the

detection module.

For ATA, the 𝑑𝑑𝑜𝑠𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 application installs drop flow rule after a

minimum number of consecutive event information is received. In this case, the

application decides the receiving event as the abnormal event if the same events are

received continuously for more than one second and the number of events is greater

than five.

The main objective of this system is to forward the normal packets from the

normal user hosts to the server and drop the abnormal packets from the attacker host

at the nearest switch or the source switch of the host as the color traffic shown in

Figure 5.3. According to the objective, the network topology constructed by using

mininet emulator [67] is used. It consists of three OpenFlow switches, one victim web

server, one attacker and three normal users as listed in Table 5.4. All links are

configured with 100 Mbps.

In this scenario, the monitoring result of the SDN network has been evaluated

for three minutes. During this time, baseline traffic was generated by concurrent

access to the web server from normal hosts and an SYN flooding attack was launched

57

for one minute from an attacker host. The duration of monitoring and attack time is

demonstrated in Figure 5.2.

Figure 5.2 Duration for the Monitoring and Attacking

Figure 5.3 Detailed Network Topology of Experimental Testbed

Table 5.4 Experimental Testbed Information

Type Host name IP address

Web server (victim) h3 10.0.0.3

Attacker h4 10.0.0.4

Normal hosts h1,h2,h5 10.0.0.1, 10.0.0.2, 10.0.0.5

This scenario includes four steps:

Step 1: A Simple HTTP web server was set up with port 80 at host h3 by using the

command: 𝑝𝑦𝑡ℎ𝑜𝑛 – 𝑚 𝑆𝑖𝑚𝑝𝑙𝑒𝐻𝑇𝑇𝑃𝑆𝑒𝑟𝑣𝑒𝑟 80 &.

Step 2: The web server was accessed from other normal hosts h1, h2, and h5

continuously and concurrently by using 𝑤𝑔𝑒𝑡 command [68] with 50000

loops: for NUM in ‘𝑠𝑒𝑞 1 1 50000‘; 𝑑𝑜 𝑤𝑔𝑒𝑡 − 𝑂 − 10.0.0.3; 𝑑𝑜𝑛𝑒. At the

same time, the web traffic from server host h3 was started to monitor for

three minutes by using a packet capturing tool,

𝑡𝑐𝑝𝑑𝑢𝑚𝑝 [69]: 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 180 𝑡𝑐𝑝𝑑𝑢𝑚𝑝 − 𝑖 𝑎𝑛𝑦 − 𝑤 𝑚𝑎𝑡𝑎. 𝑝𝑐𝑎𝑝.

58

Step 3: After one minute from the start of the monitoring, an SYN flooding attack was

launched for one minute at the rate of 100 thousand SYN packets per second

from the attacker host h4 by using ℎ𝑝𝑖𝑛𝑔3 command [70]:

𝑡𝑖𝑚𝑒𝑜𝑢𝑡 60 ℎ𝑝𝑖𝑛𝑔3 − 𝑖 𝑢1 − 𝑆 − 𝑝 80 10.0.0.3.

Step 4: After one minute attack, how many abnormal packets that the system can filter

were defined by checking the drop flow rule in the source switch s3 of the

attacked host with the command: 𝑜𝑣𝑠 − 𝑜𝑓𝑐𝑡𝑙 𝑑𝑢𝑚𝑝 − 𝑓𝑙𝑜𝑤𝑠 𝑠3.

After performing the scenario, the value of each performance parameter is

defined as follows:

1) True Positive (TP): The number of packets passing through the drop flow

rule is considered as the value of TP.

2) False Negative (FN): The number of packets in filtering traffic (i.e. attacker

host h4 to server host h3) from the captured result, 𝑚𝑎𝑡𝑎. 𝑝𝑐𝑎𝑝, is defined as

the value of FN.

3) True Negative (TN): The value for TN is calculated by subtracting the total

number of packets in the captured result, 𝑚𝑎𝑡𝑎. 𝑝𝑐𝑎𝑝, to the value of FN.

4) False Positive (FP): Since the implementation of this system is already

considered to avoid the occurrences of the false alarm, the value of FP is zero.

5.2.1.1 Experimental Results for Scenario 1

The experimental results for the comparison of ATA with MATA are

described with three sections: adaptive threshold vs incoming SYN frames, filtering

results by using 𝑑𝑑𝑜𝑠𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 application, and evaluation of performance

parameters.

A. Adaptive Threshold vs Incoming SYN Frames

The comparative results of the adaptive threshold over the incoming SYN

frames produced by ATA and MATA are shown in Figure 5.4 and 5.5, respectively.

These results are provided by the sFlow analyzer in the detection module. Since ATA

avoids false alarms in the mitigation module, the alarms can be seen at the detection

module. Each result is divided into three states: initial state (before 10s), attack state

(60s - 120s), and normal state ((20s - 59s) and (121s - 180s)).

59

Figure 5.4 Adaptive Threshold Vs Incoming Traffic by ATA

1) Initial state:

a. ATA: Since the initial threshold value is zero, the threshold is

surpassed by the incoming SYN frames as shown in the initial state of

Figure 5.4.

b. MATA: Although the initial threshold value is baseline, the false

alarms are not raised in this state.

2) Attack state: Both algorithms could detect the abnormal packets as soon as

the attack is launching by the attacker.

3) Normal state:

a. ATA: The false alarms are raised when the number of incoming SYN

frames is strongly increased as shown in the normal state of Figure 5.4.

Figure 5.5 Adaptive Threshold Vs Incoming Traffic by MATA

60

b. MATA: According to the added baseline, the minimum threshold is

the same as the baseline. As a result, false alarms are not raised in

normal conditions as shown in the normal state of Figure 5.5.

B. Filtering Results

The filtering results using 𝑑𝑑𝑜𝑠𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 applications based on the detection

results of ATA and MATA are shown in Figure 5.6. The SYN flooding packets reach

the victim web server about 46.6% when the network is filtering with ATA-based

𝑑𝑑𝑜𝑠𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 application while the MATA-based application incorrectly allows

the abnormal packets about 1.8%.

Figure 5.6 Comparison of Filtering Result of 𝒅𝒅𝒐𝒔𝒎𝒊𝒕𝒊𝒈𝒂𝒕𝒊𝒐𝒏 Application with

ATA and MATA.

The network not being filtered by any 𝑑𝑑𝑜𝑠𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 application might allow

the attack up to 92.9%. Thus, the reduction of the percentage of attack by using ATA-

based application and MATA-based application is 46.3% and 91.1%, respectively.

C. Evaluation of Performance Parameters

The percentage of FNR, DR, and ACC of each algorithm describing the

MATA is more effective than that of ATA as listed in Table 5.5. These results are the

average of ten runs for each algorithm. The average FNR is reduced from 6.15 % to

0.59 %, and the average DR and ACC also increased from 93.85% to 99.41% and

94.3% to 99.47%, respectively.

61

Table 5.5 Comparison of Performance between ATA and MATA

Performance Type of Algorithm

ATA MATA

FNR(%) 6.15 0.59

DR(%) 93.85 99.41

ACC(%) 94.30 99.47

5.2.2 Scenario 2: Flooding Attacks Detection and Mitigation

In this section, the various types of flooding attacks are tested and

implemented over the virtual network environment that is running various types of

servers and generating the various types of network traffic as in the real network

environment. For evaluating this system can detect and mitigate not only SYN

flooding attack but also the other flooding attacks, this scenario presents the various

types of flooding attack detection and mitigation.

The testbed for testing this scenario is composed of four OpenFlow switches,

one controller, six servers, and twelve clients as shown in Figure 5.7. One switch is

connected with all servers and the others are connected with the clients. One of the

client hosts is treated as an attacker and the remaining clients are benign users. Each

server is a target victim alternatively.

Figure 5.7 Network Topology for the Experimental Testbed

62

Table 5.6 Testbed Information

Type Host name IP address

Servers h1 – h6 10.0.0.1 – 10.0.0.6

Clients h7 – h17 10.0.0.7 – 10.0.0.17

Attacker h18 10.0.0.18

Switches s1 – s4 -

5.2.2.1 False Alarms Avoidance in ATA-based Detection

The ATA raises the alarm signal after a minimum number of consecutive

threshold violations for avoiding false alarms. According to the result from the

analysis of sFlow event information, the real abnormal event information and false

alarms is differentiated by defining the number of same event information occurring

continuously within a period of time. As shown in Figure 5.8, the sFlow analyzer

produced the same NTP service’s abnormal event information continuously during the

two seconds for three times. Actually, these events information are false alarms

occurring in normal conditions. Thus, more than three same event information

occurred within the two seconds is defined as the real abnormal event information for

NTP service. Similarly, the number of event information and its duration are analyzed

and predefined for each service as shown in Table 5.7.

Figure 5.8 Event Information from sFlow Analyzer

63

Table 5.7 Number of Consecutive Threshold Violation

Type of service No. of event information (n) Time (second)

Web n > 1 2

FTP n > 1 2

Mail n > 1 2

DNS n > 6 2

NTP n > 3 2

By default, the function of the sFlow analyzer for comparing the incoming

traffic with the threshold value (i.e. 𝑠𝑒𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) raises the alarms as soon as the

threshold is violated. As a result, the avoiding function of false alarm in ATA could

not implement in the detection phase of the sFlow analyser. Thus, it is implemented in

the 𝑑𝑑𝑜𝑠𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 application of the mitigation phase.

5.2.2.2 False Alarms Avoidance in MATA-based Detection

For avoiding false alarms, this algorithm is taken into account the baseline of

the network. By adding baseline into the comparison of incoming traffic and the

calculated dynamic threshold, false alarms can be avoided significantly.

In order to define the value of baseline traffic for the current network

topology, the network was observed for one minute while all normal users are

accessing all available network services concurrently. As this system is experimenting

in the virtual mininet network environment, in order to get the baseline similar to the

actual baseline traffic of the real network environment, 𝐷 − 𝐼𝑇𝐺 (Distributed Internet

Traffic Generator) tool [80] was used for generating the network traffic in the virtual

network. This tool generates the traffic with Inter Departure Time (IDT) and Packet

Size (PS) using stochastic models such as uniform, constant, exponential, pareto,

cauchy, normal, poisson, gamma, and weibull distribution. It can also generate the

transport layer traffic (i.e. TCP, UDP) and application layer traffic (i.e. DNS, Telnet,

VoIP).

The traffic generation model [72] described that poisson distribution can be

used to generate the traffic with the number of incoming packets or calls per time unit

(i.e. IDT). Moreover, the traffic including the length of each phone call (i.e. PS) can

be generated by the exponential distribution.

64

The theoretical traffic model [4] can be summarized as shown in Table 5.8.

The IDT for the telnet traffic and new network transfer protocol (NNTP) traffic can be

generated by using poisson distribution and weibull distribution respectively.

Moreover, both IDT and PS of VoIP traffic is generated by using exponential

distribution. The PS of NNTP, SMTP, and FTP traffic during the whole session are

generated by using log2-normal distribution. In addition, pareto distribution is used to

produce the PS of web and FTP traffic during a burst session.

Table 5.8 Theoretical Traffic Model for Generating IDT and PS

Service IDT PS

Telent Poisson distribution -

NNTP Weibull distribution Log2-normal distribution

SMTP - Log2-normal distribution

FTP - Log2-normal distribution during the whole

session

Pareto distribution during a burst session

WWW - Pareto distribution

VoIP Exponential distribution Exponential distribution

The combination of the traffic generation model and theoretical traffic model

was referred for generating the various types of virtual network traffic similar to the

real network traffic as shown in Table 5.9. The IDT of all traffic is generated by using

poisson distribution. Log2-normal distribution is used for the generation of PS for

SMTP and FTP traffic. Moreover, the PS of WWW traffic is generated by pareto

distribution. According to the description of the theoretical traffic model, each type of

traffic with different percentages of the packet was generated as shown in Table 5.10.

Table 5.9 Assumption for Generating of IDT and PS for Each Service

Service IDT PS

NTP, DHCP, DNS Poisson distribution -

SMTP Poisson distribution Log2-normal distribution

FTP Poisson distribution Log2-normal distribution

WWW Poisson distribution Pareto distribution

65

Table 5.10 Assumption for Packet Generation Rate

Service Percentage of the packet (%)

TCP

WWW 70

FTP 10

SMTP 5

UDP

NTP 5

DNS 5

DHCP 5

After defining the traffic generation format, firstly we setup the NTP, DHCP,

DNS, SMTP, FTP, and Web server on the mininet host h1, h2, h3, h4, h5, and h6

respectively by running ./𝐼𝑇𝐺𝑅𝑒𝑐𝑣 command. Then, all client hosts except the attacker

host h18 access the server concurrently by using ./𝐼𝑇𝐺𝑆𝑒𝑛𝑑 𝑠𝑐𝑟𝑖𝑝𝑡_𝑓𝑖𝑙𝑒. The list of

commands for accessing the servers is written in the 𝑠𝑐𝑟𝑖𝑝𝑡_𝑓𝑖𝑙𝑒 as shown in Figure

5.9.

Figure 5.9 List of Command in the 𝑺𝒄𝒓𝒊𝒑𝒕_𝑭𝒊𝒍𝒆

To represent the log2-normal distribution for the payload size for the mail and

ftp traffic is defined as shown in Figure 5.10.

Figure 5.10 List of Payload Size with Log2 in the 𝒑𝒂𝒚𝒍𝒐𝒂𝒅𝒔𝒊𝒛𝒆 File

66

In order to get all possible event information from the sFlow analyzer, the

initial baseline and threshold value is defined as zero and the

𝑑𝑑𝑜𝑠𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 application is not activated in the ONOS controller. The final value

for the baseline traffic of each service is defined according to the process and equation

which previously described in section 3.2.2.2.

Firstly, some of the various event information produced by sFlow analyzer are

listed in Table 5.11. This information includes the mixing abnormal information from

the various types of services. Thus, in order to find the baseline of the specific service,

this information is filtered by using some word containing in the Abnormal info field.

Table 5.11 List of Some Event Information from sFlow Analyzer

Flow key information Frames per

second

Abnormal

information

2019-06-13T01:58:03+0630 INFO:

000000000011,000000000005,10.0.0.17,10.0.0.5,20
4.761904762 ftp_abnormal

2019-06-13T01:58:04+0630 INFO:

00000000000E,000000000003,10.0.0.14,10.0.0.3,67
9.259591724 dhcp_abnormal

2019-06-13T01:58:04+0630 INFO:

00000000000E,000000000003,10.0.0.14,10.0.0.3,67
28.27168373 dhcp_abnormal

2019-06-13T01:58:04+0630 INFO:

000000000011,000000000001,10.0.0.17,10.0.0.1,123
12.68794475 ntp_abnormal

2019-06-13T01:58:04+0630 INFO:

00000000000E,000000000001,10.0.0.14,10.0.0.1,123
18.55222873 ntp_abnormal

2019-06-13T01:58:04+0630 INFO:

000000000009,000000000002,10.0.0.9,10.0.0.2,53
4.761904762 dns_abnormal

2019-06-13T01:58:04+0630 INFO:

000000000009,000000000001,10.0.0.9,10.0.0.1,123
4.761904762 ntp_abnormal

2019-06-13T01:58:04+0630 INFO:

000000000009,000000000003,10.0.0.9,10.0.0.3,67
4.761904762 dhcp_abnormal

2019-06-13T01:58:04+0630 INFO:

000000000009,000000000003,10.0.0.9,10.0.0.3,67
4.761904762 dhcp_abnormal

2019-06-13T01:58:04+0630 INFO:

000000000011,000000000001,10.0.0.17,10.0.0.1,123
15.6037493 ntp_abnormal

2019-06-13T01:58:04+0630 INFO:

000000000011,000000000003,10.0.0.17,10.0.0.3,67
16.60809384 dhcp_abnormal

2019-06-13T01:58:04+0630 INFO:

000000000009,000000000006,10.0.0.9,10.0.0.6,80
4.761904762 web_abnormal

1) NTP Service: For getting specific abnormal information for NTP service,

Abnormal info field is filtered by using the 𝑇𝑒𝑥𝑡 𝐹𝑖𝑙𝑡𝑒𝑟 function and searching

the field with the keyword 𝑛𝑡𝑝 to extract any records containing the word 𝑛𝑡𝑝.

Some of the extracted NTP’s records are shown in Table 5.12.

67

Table 5.12 List of Some Abnormal Information for NTP Service

Flow key information Frames per

second

Abnormal

information

2019-06-13T01:58:04+0630 INFO:

000000000011,000000000001,10.0.0.17,10.0.0.1,123
12.68794475 ntp_abnormal

2019-06-13T01:58:04+0630 INFO:

00000000000E,000000000001,10.0.0.14,10.0.0.1,123
18.55222873 ntp_abnormal

2019-06-13T01:58:04+0630 INFO:

000000000009,000000000001,10.0.0.9,10.0.0.1,123
4.761904762 ntp_abnormal

2019-06-13T01:58:04+0630 INFO:

000000000011,000000000001,10.0.0.17,10.0.0.1,123
15.6037493 ntp_abnormal

2019-06-13T01:58:04+0630 INFO:

000000000009,000000000001,10.0.0.9,10.0.0.1,123
4.761904762 ntp_abnormal

2) DNS Service: For getting specific abnormal information for DNS service,

Abnormal info field is filtered by using the 𝑇𝑒𝑥𝑡 𝐹𝑖𝑙𝑡𝑒𝑟 function and searching

the field with the keyword 𝑑𝑛𝑠 to extract any records containing the word 𝑑𝑛𝑠.

Some of the records for the DNS’s event information are listed in Table 5.13.

Table 5.13 List of Some Abnormal Information for DNS Service

Flow key information Frames per

second

Abnormal

information

2019-06-13T01:58:04+0630 INFO:

000000000009,000000000002,10.0.0.9,10.0.0.2,53
4.761904762 dns_abnormal

2019-06-13T01:58:14+0630 INFO:

00000000000B,000000000002,10.0.0.11,10.0.0.2,53
6.285714286 dns_abnormal

2019-06-13T01:58:19+0630 INFO:

000000000012,000000000002,10.0.0.18,10.0.0.2,53
4.761904762 dns_abnormal

2019-06-13T01:58:20+0630 INFO:

000000000010,000000000002,10.0.0.16,10.0.0.2,53
4.761904762 dns_abnormal

2019-06-13T01:58:22+0630 INFO:

000000000010,000000000002,10.0.0.16,10.0.0.2,53
8.805756588 dns_abnormal

3) DHCP Service: For getting specific abnormal information for DHCP service,

Abnormal info field is filtered by using the 𝑇𝑒𝑥𝑡 𝐹𝑖𝑙𝑡𝑒𝑟 function and searching

the field with the keyword 𝑑ℎ𝑐𝑝 to extract any records containing the word

𝑑ℎ𝑐𝑝. Some of the records are listed in Table 5.14.

68

Table 5.14 List of Some Abnormal Information for DHCP Service

Flow key information Frames per

second

Abnormal

information

2019-06-13T01:58:04+0630 INFO:

00000000000E,000000000003,10.0.0.14,10.0.0.3,67
9.259591724 dhcp_abnormal

2019-06-13T01:58:04+0630 INFO:

00000000000E,000000000003,10.0.0.14,10.0.0.3,67
28.27168373 dhcp_abnormal

2019-06-13T01:58:04+0630 INFO:

000000000009,000000000003,10.0.0.9,10.0.0.3,67
4.761904762 dhcp_abnormal

2019-06-13T01:58:04+0630 INFO:

000000000009,000000000003,10.0.0.9,10.0.0.3,67
4.761904762 dhcp_abnormal

2019-06-13T01:58:04+0630 INFO:

000000000011,000000000003,10.0.0.17,10.0.0.3,67
16.60809384 dhcp_abnormal

4) Web Service: For getting specific abnormal information for Web service,

Abnormal info field is filtered by using the 𝑇𝑒𝑥𝑡 𝐹𝑖𝑙𝑡𝑒𝑟 function and searching

the field with the keyword 𝑤𝑒𝑏 to extract any records containing the word

𝑤𝑒𝑏. Some abnormal event information records for web service is as shown in

Table 5.15.

Table 5.15 List of Some Abnormal Information for Web Service

Flow key information Frames per

second

Abnormal

information

2019-06-13T01:58:04+0630 INFO:

000000000009,000000000006,10.0.0.9,10.0.0.6,80
4.761904762 web_abnormal

2019-06-13T01:58:08+0630 INFO:

00000000000F,000000000006,10.0.0.15,10.0.0.6,80
4.761904762 web_abnormal

5) FTP Service: For getting specific abnormal information for FTP service,

Abnormal info field is filtered by using the 𝑇𝑒𝑥𝑡 𝐹𝑖𝑙𝑡𝑒𝑟 function and searching

the field with the keyword 𝑓𝑡𝑝 to extract any records containing the word 𝑓𝑡𝑝.

Table 5.16 listed some of the abnormal event information records for FTP

service.

Table 5.16 List of Some Abnormal Information for FTP Service

Flow key information Frames per

second

Abnormal

information

2019-06-13T01:58:03+0630 INFO:

000000000011,000000000005,10.0.0.17,10.0.0.5,20
4.761904762 ftp_abnormal

69

6) Mail Service: For getting specific abnormal information for Mail service,

Abnormal info field is filtered by using the 𝑇𝑒𝑥𝑡 𝐹𝑖𝑙𝑡𝑒𝑟 function and searching

the field with the keyword 𝑚𝑎𝑖𝑙 to extract any records containing the word

𝑚𝑎𝑖𝑙. Some records are as shown in Table 5.17.

Table 5.17 List of Some Abnormal Information for Mail Service

Flow key information Frames per

second

Abnormal

information

2019-06-13T01:58:09+0630 INFO:

00000000000C,000000000004,10.0.0.12,10.0.0.4,25
4.761904762

mail_abnormal

After grouping the specific abnormal information for each service, the

baseline value of the respective service is identified as the maximum value of the

service by using the 𝑀𝑎𝑥 function of the Microsoft Excel and rounding them to the

nearest whole number. Then, the values are listed as shown in Table 5.18.

Table 5.18 List of Baseline for Each Service

Service Baseline

NTP 64.60285 → 65

DHCP 76.64288 → 77

DNS 8.8075 → 9

SMTP 4.761905 → 5

FTP 4.761905 → 5

WWW 4.761905 → 5

In this scenario, the duration for testing and evaluation time is three minutes.

During this time, all client hosts are accessing all available servers in the network

concurrently and one attacker host launches the flooding attack for one minute as

previously described in Figure 5.2. This scenario includes four steps:

Step 1: The NTP, DHCP, DNS, SMTP, FTP, and HTTP server were set up on the host

h1, h2, h3, h4, h5, and h6, respectively by running ./𝐼𝑇𝐺𝑅𝑒𝑐𝑣 command.

Step 2: After setting up the servers, all clients (from host h7 to h17) access all the

servers concurrently by running the command ./𝐼𝑇𝐺𝑆𝑒𝑛𝑑 𝑠𝑐𝑟𝑖𝑝𝑡_𝑓𝑖𝑙𝑒 for three

minutes (18000 seconds) as shown in Figure 5.9 with the different accessing

time (i.e -t 18000). At the same time, the victim server was monitored by

70

capturing all of its incoming and outgoing traffic with a packet capturing tool

(i.e. 𝑡𝑐𝑝𝑑𝑢𝑚𝑝) such as: 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 180 𝑡𝑐𝑝𝑑𝑢𝑚𝑝 – 𝑖 𝑎𝑛𝑦 – 𝑤 𝑚𝑎𝑡𝑎. 𝑝𝑐𝑎𝑝.

Step 3: After one minute from the start of monitoring, attacker host h18 launches the

flooding attack to a particular server for one minute by using ℎ𝑝𝑖𝑛𝑔3 tool such

as:

a. For the FTP, SMTP, or WWW servers

 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 60 ℎ𝑝𝑖𝑛𝑔3 − 𝑖 𝑢1 − 𝑆 𝐷𝑠𝑡𝑃𝑜𝑟𝑡 𝐷𝑠𝑡𝐼𝑃

b. For the NTP, or DNS servers 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 60 ℎ𝑝𝑖𝑛𝑔3 −

−𝑓𝑙𝑜𝑜𝑑 – 𝑢𝑑𝑝 𝐷𝑠𝑡𝑃𝑜𝑟𝑡 𝐷𝑠𝑡𝐼𝑃

Step 4: After one minute attack, the number of flooding packets was checked that can

be able to filter by this system. Since this flooding attack detection and

mitigation system installs flow rule in the ingress switch s4 of the attacker

hosts h18, the number of packet in the drop flow rule was checked at the

switch s4 by using the command such as: 𝑜𝑣𝑠 − 𝑜𝑓𝑐𝑡𝑙 𝑑𝑢𝑚𝑝 − 𝑓𝑙𝑜𝑤𝑠 𝑠4.

The value of each performance parameter for network security is defined

according to the result of the scenario.

1) True positive (TP): The number of packets passing through the drop flow

rule is defined as the value of TP.

2) False Negative (FN): The number of packets from the filtering traffic (i.e.

from the attacker host h18 to victim server host) from the results of packet

capturing tool (i.e. 𝑚𝑎𝑡𝑎. 𝑝𝑐𝑎𝑝) is considered as the value of FN.

3) True Negative (TN): The number of packets getting from the subtraction of

the number of packets of all capturing traffic from the captured result (i.e.

𝑚𝑎𝑡𝑎. 𝑝𝑐𝑎𝑝) to the value of FN.

4) False Positive (FP): The value of FP is zero because this system is

implemented with the avoidance of false alarms mechanism.

5.2.2.3 Experimental Results for Scenario 2

Depending on the methods used in the detection and mitigation process, the

experimental results are described with two separate sections: detection results and

mitigation results.

71

A. Detection Results

The detection results consist of five parts. The first part presents the dynamic

threshold values adaptable with the incoming traffic produced by each algorithm. The

second part shows the comparative results of various performance parameters (i.e.

detection rate, false negative rate, and accuracy) over MATA and ATA algorithms to

prove why the modified algorithm is chosen to use in detecting the flooding attack.

The third parts shows the comparisons of incoming traffic and actual arrival traffic to

the server for each service in order to demonstrate how this system can detect and

mitigate the flooding attack effectively with the adaptive threshold. The evaluation

results of the MATA with various rates of the attack are described in the fourth part of

this section for indicating how the MATA can detect the various types of attacks.

Moreover, the fifth part shows the evaluation results of the performance comparisons

over the various attack time, and monitoring time for demonstrating the performance

might be varied depending on the evaluating time taken for the network monitoring

and attack launching.

i. Comparative Results of Adaptive Threshold over Incoming Traffic

Figure 5.11 and 5.12 show the DNS traffic's adaptive threshold dynamically

produced by the sFlow analyzer based on the ATA and MATA, respectively. The

main difference between the results of the two algorithms is that the false alarms can

be seen at the initial state and normal state of the result produced by ATA while the

MATA does not produce any of them. The reason is that the MATA reduces the

occurrence of the false alarms significantly in the detection phase by using its

modified technique. But, ATA raises some false alarms in the detection phase and

avoids them in the mitigation phase. Each comparative result is divided into three

states: initial state (before 10s), attack state (60s - 120s), and normal state ((11s - 50s)

and (121s – 180s)).

72

Figure 5.11 Adaptive Threshold Produced by ATA

1) Initial state:

a. ATA: The threshold value is initialized as zero. Thus, the threshold is

violated by the incoming traffic at the first comparison as shown in the

initial state of Figure 5.11.

b. MATA: The initial threshold value is defined as the value of the

baseline. As a result, there are few false alarms at the initial state as

shown in the initial state of Figure 5.12.

Figure 5.12 Adaptive Threshold Produced by MATA

2) Attack state: According to the result of the attack state of each figure, both

algorithms could detect the flooding packets immediately when the attack is

launching by the attacker. The delay time for the detection of both algorithms

is at most one second.

73

3) Normal state:

a. ATA: The false alarms might be raised when the current rate of the

incoming frames is slightly stronger than the previous rate as shown in

the normal state of Figure 5.11.

b. MATA: There are few false alarms in both initial and normal states

because the minimum threshold value itself is the same as the baseline

traffic and then the thresholds are adaptable with the incoming frames.

ii. Comparative Results of Performance Parameters

In general, the performance parameters used in the evaluation of the network

security include detection rate, false positive rate, false negative rate, and accuracy.

Thus, this system also evaluates its performance by using general performance

parameters. However, it does not describe the false positive rate because this system

significantly reduces them in its implementation (i.e. the false positive rate is zero).

The average percentage of each rate is obtained by calculating the average value of

ten runs.

The comparison of detection rate produced by MATA and ATA over various

types of services is described in Figure 5.13. The detection rate of MATA is slightly

higher than the rate of ATA and the rate of the two algorithms is not extremely

different because the original ATA is modified especially in reducing false negative

rate for the avoidance of false positive rate.

74

Figure 5.13 Comparisons of DR over Various Types of Services

The comparative results of the false negative rate for each service are shown

in Figure 5.14. Each service has a different rate of incoming packets. The false

negative rate of ATA is varied because this algorithm distinguishes the normal and

malicious packets by analyzing the number of continuous incoming packets within a

particular time. Thus, these rates are depending on the incoming rate of the packets of

the service. MATA produces similar false negative rate for all services because it uses

the same definition based on their baseline to differentiate the normal and malicious

packets.

ATA produces a high value of FNR in DNS service because the incoming

normal DNS packet rate is higher than the other services and the number of

continuous incoming packets during the two seconds is about 6. Thus, ATA defines

the incoming packet as the abnormal one when the number of the consecutive

incoming packet within the two seconds is more than 6 packets as listed in Table 5.7.

As a result, the number of the attack reaches the victim DNS server is high while the

network is being in the attack. In contrast, the number of continuous incoming SYN

packet within two seconds is 1 for the Web service. Since the normal incoming packet

rate itself is very low, the attack can be detected early as soon as the number of the

packet is greater than 1.

75

Figure 5.14 Comparisons of FNR over Various Types of Services

Similarly, ATA produces a different percentage of accuracy for each service

because the calculation of accuracy is also depending on its false negative rate. It

provides about 97.5% for the maximum percentage of Web service and around 83.2%

for the minimum percentage of DNS service while MATA produces the accuracy

above 99% for each service as shown in Figure 5.15.

Figure 5.15 Comparisons of Accuracy over Various Types of Services

By reviewing the comparative average number of percentages for detection

rate, false negative rate, and accuracy produced by MATA and ATA, MATA is an

76

appropriate algorithm for the detection and mitigation of the flooding attacks because

it provides a higher percentage of each performance parameter for all service than

ATA.

iii. Comparative Results of Incoming Traffic in sFlow Analyser and Arrival

Traffic in Each Server

The comparison of the incoming traffic and actual arrival traffic of each

service is described in this section. The result of each figure has two parts: incoming

traffic in sFlow analyzer and arrival traffic in each server. The sFlow analyzer collects

the sample incoming frames from the switches and dynamically produces the adaptive

threshold as shown in the upper part of each figure. In this part, all the flooding

attack's frames can be seen obviously during the time of attacking (i.e. from the 60s to

120s). As soon as the flooding attack comes to the switch, the threshold is violated by

the flooding frames and the analyzer raises the alarm.

As the 𝑑𝑑𝑜𝑠𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 application takes the event information from the

analyzer in every second, it got the alarm within one second and then discards the

flooding frames by installing the drop flow rule at the ingress switch. Thus, the

flooding frames might reach the server about one second during the drop flow rule

installation of the 𝑑𝑑𝑜𝑠𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 application as shown in the lower part of the

figure at the time between the 60s and 61s. After the installation of the drop flow rule,

the attack could not reach the server. As a result, the normal users can access the

server without any interruption even the attacker is still sending the flooding attacks

to the network. Thus, the arrival traffic of each service during and after the attack is

remaining the same as the previous traffic before the attack as shown in the lower part

of each figure. The amount of arrival traffic is different among the servers because the

traffic is incoming according to the percentage defined in the experimental setup

settings. Figure 5.16, 5.17, 5.18, 5.19, and 5.20 show the comparative traffic of Web,

FTP, Mail, DNS and NTP, respectively.

77

Figure 5.16 Web Traffic and its Adaptive Threshold

Since the amount of traffic generated for web service is assumed as seventy

percent of all traffic, the web traffic in the lower part of Figure 5.16 is the thickest

traffic among any other traffic as shown in Figures 5.17, 5.18, 5.19, 5.20.

Figure 5.17 FTP Traffic and its Adaptive Threshold

As shown in the lower part of Figure 5.17, the FTP traffic is less thick than the

web traffic. The reason is that the amount of traffic generation for FTP service is ten

percent of all traffic in the network.

Figure 5.18 Mail Traffic and its Adaptive Threshold

78

According to the assumption of the traffic generation model, Mail traffic is

generated only five percent of all traffic. Hence, the mail traffic as shown in the lower

part of the Figure 5.18 is thinner than the other TCP traffic: Web and Mail traffic.

Figure 5.19 DNS Traffic and its Adaptive Threshold

The UDP traffic: DNS and NTP traffic are generated only five percent of all

traffic similar to the Mail traffic. Although these two services are assumed the same

amount of traffic generation with the Mail service, the traffic as shown in the lower

part of the respective Figures 5.19 and 5.20 is thinner than the mail traffic shown in

Figure 5.18. The reason is that the mail traffic contains the defined payload size while

the two UDP traffic are generated without any payload size definition.

Figure 5.20 NTP Traffic and its Adaptive Threshold

iv. Comparisons of Performance over Various Attack Rates

Depending on the rate of the attack, the percentage of the detection rate and

false negative rate are different. As this system is implemented in the flooding attack

at the transport layer, the performance comparison of attack rate is described

separately for TCP and UDP protocols. Web and DNS service is used to represent the

TCP and UDP protocol, respectively.

79

Figure 5.21 Comparisons of Various Attack Rates over Web Service

Five different rates of attack (i.e. 10 packets per second, 100 packets per

second, 1000 packets per second, 10000 packets per second, and 10000 packets per

second) are used to test the performance of the system. For testing each rate of attack,

the ℎ𝑝𝑖𝑛𝑔3 command is used with u100000, u10000, u1000, u100, u10 and u1 to send

the attack packet with 10 packets per second, 100 packets second, 1,000 packets per

second, 10,000 packets per second, and 100,000 packets per second, respectively.

These results are produced by averaging the results of ten runs.

Figure 5.22 Comparisons of Various Attack Rates over DNS Service

According to the results of the detection rate and false negative rate as shown

in Figure 5.21 and 5.22, the detection rate of the MATA algorithm can be determined

80

as the higher the attack rate, the higher the detection rate. In contrast, the false

negative rate can be defined as the higher the attack rate, the lower the false negative

rate. Although the detection mechanism using this algorithm can detect all attack rates

for Web traffic, it is not capable to detect the lowest rate of attack (i.e. 10 packets per

second) for DNS traffic because the rate of the normal packet of the UDP protocol

itself is high. But it can be starting to detect the attack with the rate of 100 packets per

second.

v. Comparisons of Performance over Various Monitoring Time and Attack

Time

The performance can be slightly varied depending on the evaluating time

taken for the network monitoring and attack launching. The reason is that the formula

used in performance evaluation is relying on the ratio of the percentage of attack and

normal packet. The longer the attacking time, the more attack packets are increasing.

Similarly, the longer the monitoring time, the more normal packets are observing.

The experimental results in this book except this section are produced from the

monitoring results taken in the duration of three minutes with one-minute attack.

For proving this system which can detect the attack effectively over the

various flooding attack time and monitoring time, the various performance results are

produced by evaluating the web service with the different amount of time taken for

attacking and monitoring as shown in Figures 5.23 and 5.24. The results of Figure

5.23 are produced from the various attack time within a monitoring time. The

monitoring time is seven minutes and the different attacking times are from one

minute to six minutes. Although the detection rate is slightly increased and the false

negative rate is gradually decreased as the attack time is increased, the detection rate

is not lower than the 99% and the false negative rate is not higher than the 1%.

81

 Figure 5.23 Comparisons of Various Attack Time over Web Service

Figure 5.24 shows the results produced from the various monitoring times

with the same attack time. The monitoring times are from 3 minutes to 7 minutes.

During each monitoring time, an attack is launched for one minute. As the monitoring

time is more increased, the performance is weaker because the percentage of normal

packets is increased more and more while the percentage of attack is being stable.

Figure 5.24 Comparisons of Various Monitoring Time over Web Service

B. Mitigation Results

The second section of the experimental results, the mitigation results, shows

the filtering results using the 𝑑𝑑𝑜𝑠𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 application and the results without

using it. The comparisons of the percentage of filtering results produced by source-

82

based and destination-based defense methods are also performed in this section to

show why the source-based defense mechanism is used in this system. Moreover, the

performance of the network during attack filtering is measured to prove that the

source-based defense mechanism is more effective than the destination-based one.

i. Filtering Results

The 𝑑𝑑𝑜𝑠𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 application drops the abnormal traffic depending on the

alert information obtained from the sFlow analyzer. The application takes the

information from the analyzer every second by using REST API. Thus, the maximum

time between the detection and mitigation is one second.

Figure 5.25 Comparison of Network Traffic with and without Filtering

By filtering the network with the application, the normal users can access a

particular service without interrupting even though the server is in the attack. In

contrast, without filtering the network with the 𝑑𝑑𝑜𝑠𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 application, the

server can be down as soon as it is in the attack, and the service will be no longer

available for normal users. The comparative result of filtering the network with and

without 𝑑𝑑𝑜𝑠𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 application is as shown in Figure 5.25. These results are

produced from the I/O graphs of the capturing results for one minute.

83

Figure 5.26 Comparison of Attack Packets reach the Victim Servers

Moreover, Figure 5.26 describes the percentage of the attack packet reach the

victim server while the network is filtering with the 𝑑𝑑𝑜𝑠𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 application

implemented with two different defense mechanisms (i.e. source-based defense

mechanism and destination-based mechanism). To decide that how many percentages

of the attack packet can be reduced by each mechanism, the figure also describes the

percentage of attack packet reaches the victim server when the network is not filtering

with the 𝑑𝑑𝑜𝑠𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 application.

Table 5.19 Reduction of Attack Packets Reach the Victim Servers

Mechanism Web Mail FTP DNS NTP

Source-based defence 76.6 84.2 93.8 78.8 94.6

Destination-based defence 73.5 63.6 81.3 28.9 31.4

By reviewing the results of the percentage of the attack packet that reaches the

victim server, the source-based defense mechanism could reduce the attack packet up

to 94.6% while the destination-based mechanism only reduces them to 31.4% for NTP

service as listed in Table 5.19. Thus, the source-based defense mechanism is more

effective than a destination-based defense mechanism for the flooding attacks with the

non-spoofing IP address.

84

ii. Network Performance

Figure 5.27 shows the comparative results of average network performance

while the network is being in attack and filtering with the source-based and

destination-based defense mechanism. The performance is measured by pinging with

ten packets from client host h8 to h17. The average performance is also calculated by

monitoring the ten times of average time to live (i.e 𝑡𝑡𝑙) from pinging and averaging

the results.

Since the former mechanism is dropping the attack packets nearest to the

source of the attack, the network will not be congested with those attack packets.

Thus, the source-based defense mechanism maintains higher performance than the

destination-based defense mechanism. As shown in Figure 5.27, the latency of the

source-based defense mechanism for each service is about doubling the latency of the

destination-based defense mechanism.

But, the source-based defense mechanism can only protect the direct attack

because it must know the exact location of the attack so that it can install drop flow

rule into the ingress switch of the attack host. If it does not know the location of the

attack, the destination-based mechanism is preferred. Although this method can

protect the attack with spoof IP addresses, the network might be congested because of

attack traffic.

Figure 5.27 Comparative Results for Network Performance during the Network

is being in Attack

85

5.3 Chapter Summary

This chapter described two types of scenarios for testing this system. The first

type is a simple scenario with only one attack, SYN flooding attack and the network is

solely generated the web traffic. The second scenario is to test the system as in the

real network environment by generating all possible network traffic and launching the

transport layer flooding attacks into the network. It also presented the various

comparative results produced from the two scenarios.

86

CHAPTER 6

CONCLUSION AND FUTURE WORKS

This chapter describes the summary of the dissertation, advantages and

limitations, and recommendations for the future works.

6.1 Summary of Dissertation

Flooding attacks might fail the whole SDN network or services running in the

network during a short time. Thus, the effective and speedy mechanism for detecting

and mitigating the flooding attack is necessary for the network. Various techniques

are proposed for the detection and mitigation of the DDoS attack including flooding

attacks. Statistical analysis techniques are commonly used to detect the flooding

attack. Entropy and change point detection are belonging to statistical analysis

techniques. Although entropy can measure the randomness of the network traffic

within a given time, they could not differentiate the different distributions with equal

uncertainty. Thus, the malicious traffic without randomness will not be detected.

Change point detection techniques are effectively used in DDoS detection and

mitigation. However, the function of the detection is implemented in the SDN

controller itself. As a result, the controller might be overloaded with the detection

operations. For avoiding the statistic overhead in the SDN controller, the whole

detection operations can be delegated to the sFlow analyzer. The most commonly

used dynamic threshold algorithms are the adaptive threshold algorithm (ATA) and

the cumulative sum algorithm (CUSUM).

Both high-intensity and low-intensity attacks can be detected by using

CUSUM. However, ATA can detect only high-intensity attack. In the CUSUM

algorithm, the two static values for the Maximum threshold and Minimum Threshold

must be defined. Moreover, the implementation of this algorithm cannot be

accomplished in the sFlow analyzer because sFlow allows the comparison which is

more than the maximum value and does not allow the comparison which is less than

the minimum value. Thus, CUSUM is not adaptable with the default API of the

sFlow. However, ATA can be appropriately implemented in sFlow. But it produces a

high number of false alarms. The avoiding method of false alarms used in this

algorithm might increase the false negative rate as a consequence. This method is

defining the abnormal when the number of threshold violations consecutively occurs

87

within a specific time. As a result, the tradeoff between false positive rate and

detection rate depends on the predefined number of threshold violations and time for

it. Since it does not discard the attack as soon as the threshold violation occurs, the

false negative rate will be increased. For circumventing the consequence problem of

increasing the false negative rate, the false alarms are significantly reduced by

modifying the ATA with the consideration of the baseline of the network.

In order to get the baseline in the virtual network environment as in the real

time network, 𝐷 − 𝐼𝑇𝐺 tool is used in the traffic generation. Moreover, the

experimental testbed is constructed with the various types of servers and clients like

in the real world. Traffic is also generated by referencing the traffic models to get the

real network traffic pattern. While all other clients are accessing the servers

concurrently, the attacker launches the flooding attack on the victim server. During

the experimentation, the network traffic is captured by using the traffic capturing tool

𝑡𝑐𝑝𝑑𝑢𝑚𝑝. After the experiment is finished, the performance parameters of network

security (i.e. detection rate, false negative rate, and accuracy) are measured by

calculating the percentage of false negative, true positive, and true negative values

from the captured result. False positive rate is considered as zero because the ATA

algorithm alrea6dy considered the avoidance method of false alarms.

All of the above described dissertation was presented in this book with six

chapters. In chapter 1, the dissertation was starting introduced with the definition of

the flooding attack, and the impact of the attack on the SDN network especially. This

chapter also described the types of flooding attacks and the mechanisms for the

detection and mitigation of these attacks. Moreover, this chapter described the

motivation of the research by pointing out the incomplete effectiveness of legacy

defense mechanisms with the list of recent DDoS attacks on various recognized

organizations. It also introduced threshold is important in the statistical analysis

technique and described the weakness of the calculation method for the dynamic

threshold as the problem of this research. It also described the objectives which are

related to overcoming the weak points of the original works. It sequentially presented

the focus works along the way of the research. It then described the modification of

the calculation method for producing the adaptive and dynamic threshold which

supporting the effective detection and mitigation of the flooding attack as the main

contribution of the research.

88

The literature reviews of the detection and mitigation of the flooding attack in

SDN with the various types of mechanisms were described in chapter 2. Before

describing these detection and mitigation mechanisms, this chapter described the

limitation of traditional networking for defending of DDoS attack and the advantages

of SDN over the limitations of existing DDoS defense mechanisms. Then, it presented

separately the brief review of the previous works for each type of mechanism. It has

two main sections for describing the mechanisms: detection, and mitigation. The

detection mechanisms were furthered divided into five types: statistical analysis

including entropy and change-point detection, machine learning, traffic pattern

analysis, connection rate, and integration of traffic monitoring tool and OpenFlow.

Likewise, each mitigation mechanism was separately described in each sub-section

such as source-based, destination-based, and hybrid-based drop packet or block port,

redirection, control bandwidth, and change network topology.

The background theory for the flooding attack detection and mitigation over

the SDN network was detailed described in chapter 3. Thus, it included the

description of the SDN architecture and its main components such as OpenFlow

protocol, Open vSwitch, and ONOS controller. It also described three types of flow

rule installation (i.e. reactive, proactive, hybrid), which are the main functions of the

SDN controller. Since this dissertation used the sFlow analyzer for analyzing the

incoming packets, this chapter presented the collection and manipulation of packet

statistics with the sFlow-RT analyzer in SDN with the description of sampling rate

and polling interval. Moreover, this chapter described the two algorithms (i.e.,

original algorithm, and modified algorithm) for the calculation of the dynamic

threshold used in this dissertation. The performance evaluation methods of the

network security which are used in this dissertation are also detailed described in this

chapter with the confusion matrix and respective equations.

The overall system architecture for the flooding attack detection and

mitigation in SDN was firstly described in chapter 4. As this system used the sFlow-

RT analyzer in the attack detection phase and ONOS controller in the attack

mitigation phase, each phase is detailed explained with the process flow. Moreover, as

this dissertation used the dynamic threshold in traffic comparison of the sFlow

analyzer, the step by step process for the implementation of the dynamic and adaptive

threshold algorithm within the analyzer is then described as the form of procedure.

Since this dissertation is mainly contributed to modifying the dynamic threshold

89

algorithm, the implementation of both original and modified algorithms was included

in each description of this chapter.

The experimental design and implementation of the flooding attack detection

and mitigation in SDN were presented in chapter 5 with the various types of

experimental results. For proving that the modified adaptive threshold algorithm is

more effective than the original one, all experimental results are produced based on

the comparison of the two algorithms. Firstly, it described the design for the testbed

with the hardware and software requirements. Then, two types of scenarios were used

to evaluate the results produced from the detection and mitigation of only the SYN

flooding attack, and the various types of flooding attacks. For only SYN flooding

attack detection and mitigation, the experimental results are described as the

comparison of adaptive threshold and traffic, the filtering results, and the results from

the performance parameters: FNR, DR, and ACC.

In the testing of the experiment with the various types of flooding attack, the

false alarm avoidance methods for both algorithms are detailed described in this

chapter with some testing data. Since this dissertation analyzed the traffic generated

from the mininet emulator, this chapter also described the traffic generation model

and tool for generating the traffic as in the real network traffic. The experimental

results of the various types of flooding attack detection and mitigation are separately

described with two main sections: detection and mitigation results. The detection

results consist of five parts: comparative results of adaptive threshold over incoming

traffic, comparative results of performance parameters, comparative results of

incoming traffic in sFlow analyzer and arrival traffic in each server, comparisons of

performance over various attack rates, and comparisons of performance over various

monitoring time and attack time. The mitigation results also consist of two main parts:

filtering results including the comparison of network traffic with and without filtering,

comparison of attack packets reach the victim servers, and reduction of attack packets

reach the victim servers, and the measurement of network performance during the

network is being in attack.

6.2 Advantages and Limitations

By using the modified ATA, the average percentage of the false negative rate

and the accuracy are around 0.7% and 99%, respectively. Although this method has a

little overhead for finding the baseline of the network traffic, it considerably reduces

90

the false alarms by producing the dynamic and adaptive threshold based on the

baseline of the network traffic. Thus, the attack might be discarded immediately when

the 𝑑𝑑𝑜𝑠𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 application received the abnormal event information. Moreover,

since the application regularly takes the event information from the sFlow analyzer

every second, the maximum delay time for detection and mitigation is one second

while the detection time of previous works [13][52] was around four seconds.

Therefore, it can be concluded that MATA is the effective and speedy algorithm for

the various types of flooding attacks detection and mitigation.

The main limitation of this dissertation is that it can detect only the flooding

attack with the non-spoofing IP address and non-distributed DoS attack because of the

source-based defense mechanism. It can detect only the high-intensity attack because

ATA solely checks the traffic rate is greater than the threshold value.

6.3 Recommendations for Future Work

Although this system is implemented to fulfill with its objectives, it still has

some implementations as its extensions or future works.

The detection phase of the flooding attack will be needed to implement in

SDN controller itself without using the assistance of the analyzer. Then, the

comparison of the two methods: with, and without using the sFlow-RT analyzer can

be made.

This system can only detect and mitigate the transport layer attack based on

the non-spoofing address, and high-intensity attack. Thus, it is better to extend this

system to be able to analyze the various types of attacks including application-layer

flooding attacks, low-level attacks, and spoofing IP attacks.

Moreover, as this system is implemented based on the layer 2 forwarding

network, it can be deployed within the same network. For applying it over the

different networks, this system will be needed to implement the detection and

mitigation of the flooding attack over layer 3 and above SDN network by using SDN-

IP application in ONOS controller.

Since this system is evaluated by using the own generated network traffic, it is

better to test and evaluate the implemented system with the dataset by replaying the

traffic into the SDN network.

It is better to implement this system on the real SDN testbed than the emulated

network topology. The final recommendation for the future work of this system is to

91

implement the flooding attack detection and mitigation system as a network function

for the intrusion detection system (IDS) running on the SDN network by using

SDN/NFV architecture.

92

AUTHOR’S PUBLICATIONS

[p1] N. H. M. Oo and A. H. Maw, "Firewall Application for ONOS SDN

Controller", in Proceedings of the 15th International Conference on Computer

Applications 2017(ICCA 2017), Yangon, Myanmar, pp. 391-397, 2017

February.

[p2] N. H. M. Oo and A. H. Maw, "Stateful Firewall Application on Software-

Defined Networking", in Proceedings of the 1st International Conference on

Advanced Information Technology 2017 (ICAIT 2017), Yangon, Myanmar,

pp. 39-45, 2017 November.

[p3] N. H. M. Oo and A. H. Maw, " State-aware Packet Forwarding on Software-

Defined Networking", in Proceedings of the 16th International Conference on

Computer Applications 2018(ICCA 2018), Yangon, Myanmar, pp. 368-373,

2018 February.

[p4] N. H. M. Oo and A. H. Maw, "SYN Flooding Attack Detection and Mitigation

in SDN", in Proceedings of 2019 The 9th International Workshop on Computer

Science and Engineering, WCSE_2019_SPRING, Yangon, Myanmar, pp.

126-131, 2019 February 27 - March 1, ISBN: 978-981-14-1455-8,

doi:10.18178/wcse.2019.03.022.

[p5] N. H. M. Oo and A. H. Maw, "Effective Detection and Mitigation of SYN

Flooding Attack in SDN", in Proceedings of the 19th International Symposium

on Communications and Information Technologies (ISCIT 2019), Ho Chi

Minh, Vietnam, pp. 300-305, 2019 November 21, IEEE.

[p6] N. H. M. Oo, A.C. Risdianto, L.T. Chaw, A. H. Maw, "Flooding Attack

Detection and Mitigation in SDN with Modified Adaptive Threshold

Algorithm", International Journal of Computer Network & Communication

(IJCNC), ISSN: 0974 – 9322 [Online]; 0975 – 2293 [Print], 2020 January. (To

be appeared).

93

BIBLIOGRAPHY

[1] A.A. Aizuddin, M. Atan, M. Norulazmi, M.M. Noor, S. Akimi, Z. Abidin,

“DNS amplification attack detection and mitigation via sFlow with security-

centric SDN”, In Proceedings of the 11th International Conference on

Ubiquitous Information Management and Communication, pp. 3, 2017

January 5, ACM.

[2] A. Aleroud, I. Alsmadi, “Identifying DoS attacks on software-defined

networks: a relation context approach”, In NOMS 2016-2016 IEEE/IFIP

Network Operations and Management Symposium, pp. 853-857, 2016 April

25, IEEE.

[3] A. Arins, “Firewall as a service in SDN OpenFlow network. In 2015 IEEE

3rd Workshop on Advances in Information”, Electronic and Electrical

Engineering (AIEEE), pp. 1-5, 2015 November 13, IEEE.

[4] Avallone, S., Emma, D., Pescapé, A., & Ventre, G., “Performance evaluation

of an open distributed platform for realistic traffic generation”, Performance

Evaluation, 60(1-4), pp. 359–392, 2005.

[5] N. Axel, B. Davis, “Software-Defined Networking”, Cisco, 2013 August 30.

[6] N.Z. Bawany, J.A. Shamsi, K. Salah, “DDoS attack detection and mitigation

using SDN: methods, practices, and solutions”. Arabian Journal for Science

and Engineering, 42(2), pp. 425-41, 2017 February 1.

[7] K. Bogineni. “Introducing ONOS—A SDN network operating system for

service providers”, White Paper, 2014.

[8] R. Braga, E. Mota, A. Passito, “Lightweight DDoS flooding attack detection

using NOX/OpenFlow”, In LCN, 10, pp. 408-415, 2010 October 10.

[9] S. Brent, “OpenFlow: Proactive vs Reactive Flows”, 2013 January 15.

[10] C. Buragohain, N. Medhi, “FlowTrApp: An SDN based architecture for

DDoS attack detection and mitigation in data centers”, In 2016 3rd

International Conference on Signal Processing and Integrated Networks

(SPIN), pp. 519-524, 2016 February 11, IEEE.

[11] T. Chin, X. Mountrouidou, X. Li, K. Xiong, “Selective packet inspection to

detect DoS flooding using software-defined networking (SDN)”. In 2015

IEEE 35th international conference on distributed computing systems

workshops, pp. 95-99, 2015 June 29, IEEE.

94

[12] V. Christodoulou, Y. Bi, “A combination of CUSUM-EWMA for Anomaly

Detection in time series data”, In 2015 IEEE International Conference on

Data Science and Advanced Analytics (DSAA), pp. 1-8, 2015 October 19,

IEEE.

[13] M. Conti, A. Gangwal, M.S. Gaur, “A comprehensive and effective

mechanism for DDoS detection in SDN”, In 2017 IEEE 13th International

Conference on Wireless and Mobile Computing, Networking and

Communications (WiMob), pp. 1-8, 2017 October 9, IEEE.

[14] M. Conti, A. Gangwal, “Blocking intrusions at border using software

defined-internet exchange point (sd-ixp)”. In 2017 IEEE Conference on

Network Function Virtualization and Software-Defined Networks (NFV-

SDN), pp. 1-6, 2017 November 6, IEEE.

[15] N.G. Dharma, M.F. Muthohar, J.A. Prayuda, K. Priagung, D. Choi, “Time-

based DDoS detection and mitigation for SDN controller”, In 2015 17th

Asia-Pacific Network Operations and Management Symposium (APNOMS),

pp. 550-553, 2015 August 19, IEEE.

[16] C. Dillon, M. Berkelaar, “Openflow (d) dos mitigation”. Technical Report

(February 2014). http://www. delaat. net/rp/2013-2014/p42/report. pdf, 2014.

[17] P. Dong, X. Du, H. Zhang, T Xu, “A detection method for a novel DDoS

attack against SDN controllers by vast new low-traffic flows”, In 2016 IEEE

International Conference on Communications (ICC), pp. 1-6, 2016 May 22,

IEEE.

[18] S. Dotcenko, A. Vladyko, I. Letenko. “A fuzzy logic-based information

security management for software-defined networks”, In16th International

Conference on Advanced Communication Technology, pp. 167-171, 2014

February 16, IEEE.

[19] L. Dridi, M.F. Zhani, “SDN-guard: DoS attacks mitigation in SDN

networks”, In 2016 5th IEEE International Conference on Cloud Networking

(Cloudnet), pp. 212-217, 2016 October 3, IEEE.

[20] P.T. Duy, V.H. Pham, “A role-based statistical mechanism for DDoS attack

detection in SDN”, In 2018 5th NAFOSTED Conference on Information and

Computer Science (NICS), pp. 177-182, 2018 November 23, IEEE.

95

[21] A. Esage, “Poker Tournaments Cancelled after DDoS Attacks, Players want

to be reimbursed”, 2018 May 4.

[22] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, V. Maglaris,

“Combining OpenFlow and sFlow for an effective and scalable anomaly

detection and mitigation mechanism on SDN environments”, Computer

Networks, 62, pp. 122-36, 2014 April 7.

[23] T. Graf. “Underneath OpenStack Quantum: Software-Defined Networking

with Open vSwitch”. Retrieved from. 2013.

[24] H. Guesmi, L.A. Saidane, “Using sdn approach to secure cloud servers

against flooding based ddos attacks”, In 2017 25th International Conference

on Systems Engineering (ICSEng), pp. 309-315, 2017 August 22, IEEE.

[25] S. Hilton, “Dyn Analysis Summary Of Friday October 21 Attack”, 2016

October 26.

[26] D. Hu, P. Hong, Y. Chen, “FADM: DDoS flooding attack detection and

mitigation system in software-defined networking”, In GLOBECOM 2017-

2017 IEEE Global Communications Conference, pp. 1-7, 2017 December 4,

IEEE.

[27] L. Irwin, “Luxembourg government servers hit by DDoS attack”, 2017

March 8.

[28] R. Jin, B. Wang, “Malware detection for mobile devices using software-

defined networking”, In 2013 Second GENI Research and Educational

Experiment Workshop, pp. 81-88, 2013, IEEE.

[29] A. Kalliola, K. Lee, H. Lee, T. Aura, “Flooding DDoS mitigation and traffic

management with software-defined networking”, In 2015 IEEE 4th

International Conference on Cloud Networking (CloudNet), pp. 248-254,

2015 October 5, IEEE.

[30] R. Kandoi, M. Antikainen, “Denial-of-service attacks in OpenFlow SDN

networks”, In 2015 IFIP/IEEE International Symposium on Integrated

Network Management (IM), pp. 1322-1326, 2015 May 11, IEEE.

[31] P. Kumar, M. Tripathi, A. Nehra, M. Conti, C. Lal, “SAFETY: Early

detection and mitigation of TCP SYN flood utilizing entropy in SDN”, IEEE

Transactions on Network and Service Management, 15(4), pp. 1545-59, 2018

July 31.

https://www.sciencedirect.com/science/article/abs/pii/S1389128613004003#!
https://www.sciencedirect.com/science/article/abs/pii/S1389128613004003#!
https://www.sciencedirect.com/science/article/abs/pii/S1389128613004003#!
https://www.sciencedirect.com/science/article/abs/pii/S1389128613004003#!

96

[32] A. Lara, A. Kolasani, B. Ramamurthy , “Network innovation using openflow:

A survey”. IEEE communications surveys & tutorials, 16(1), pp. 493-512,

2013.

[33] M. Latah, L. Toker, “A novel intelligent approach for detecting DoS flooding

attacks in software-defined networks”, International Journal of Advances in

Intelligent Informatics, 4(1), pp. 11-20, 2018 March 1.

[34] S. Lim, J. Ha, H. Kim, Y. Kim, S. Yang, “A SDN-oriented DDoS blocking

scheme for botnet-based attacks”, In 2014 Sixth International Conference on

Ubiquitous and Future Networks (ICUFN), pp. 63-68, 2014, IEEE.

[35] Y. Lu, M. Wang, “An easy defense mechanism against botnet-based DDoS

flooding attack originated in SDN environment using sFlow”, In Proceedings

of the 11th International Conference on Future Internet Technologies, pp. 14-

20, 2016 June 15, ACM.

[36] J. zheng, Q. Li, G. Gu, J. Cao, D.K. Yau, J. Wu, “Realtime DDoS defense

using COTS SDN switches via adaptive correlation analysis”. IEEE

Transactions on Information Forensics and Security, 13(7), pp. 1838-1853,

2018 February 12.

[37] J. Mao, W. Deng, F. Shen, “DDoS Flooding Attack Detection Based on

Joint-Entropy with Multiple Traffic Features”, In 2018 17th IEEE

International Conference On Trust, Security And Privacy In Computing And

Communications/12th IEEE International Conference On Big Data Science

And Engineering (TrustCom/BigDataSE), pp. 237-243, 2018 August 1,

IEEE.

[38] S.A. Mehdi, J. Khalid, S.A. Khayam, “Revisiting traffic anomaly detection

using software-defined networking”, In International workshop on recent

advances in intrusion detection, pp. 161-180, 2011 September 20, Springer,

Berlin, Heidelberg.

[39] R. Mohammadi, R. Javidan, M. Conti, “Slicots: An sdn-based lightweight

countermeasure for tcp syn flooding attacks”. IEEE Transactions on Network

and Service Management, 14(2), pp. 487-97, 2017 May 8.

[40] L. Mutu, R. Saleh, A. Matrawy, “Improved SDN responsiveness to UDP

flood attacks”, In 2015 IEEE Conference on Communications and Network

Security (CNS), pp. 715-716, 2015 September 28, IEEE.

97

[41] T.M. Nam, P.H. Phong, T.D. Khoa, T.T. Huong, P.N. Nam, N.H. Thanh,

L.X. Thang, P.A. Tuan, V.D. Loi, “Self-organizing map-based approaches in

DDoS flooding detection using SDN”. In2018 International Conference on

Information Networking (ICOIN), pp. 249-254, 2018 January 10, IEEE.

[42] L. H. Newman, “GitHub Survived the Biggest DDoS Attack Ever Recorded”,

2018 January 3.

[43] M. Özçelik, N. Chalabianloo, G. Gür, “Software-defined edge defense

against IoT-based DDoS”, In 2017 IEEE International Conference on

Computer and Information Technology (CIT), pp. 308-313, 2017 August 21,

IEEE.

[44] Peter, “Network-wide visibility, Telemetry, analytics, and control with

sFlow® standard”, 2009 May 15.

[45] Peter, “Sampling rates, Telemetry, analytics, and control with sFlow®

standard”, 2009 June 26.

[46] P. Phaal and S. Panchen, “Packet Sampling Basics”, 2002.

[47] T.V. Phan, T. Van Toan, D. Van Tuyen, T.T. Huong, N.H. Thanh,

“Openflowsia: An optimized protection scheme for software-defined

networks from flooding attacks”, In 2016 IEEE Sixth International

Conference on Communications and Electronics (ICCE), pp. 13-18, 2016

July 27, IEEE.

[48] R. Priyadarshini, R.K. Barik, “A deep learning based intelligent framework

to mitigate DDoS attack in fog environment”, Journal of King Saud

University-Computer and Information Sciences, 2019 April 24.

[49] A. Sangodoyin, B. Modu, I. Awan, J.P. Disso, “An approach to detecting

distributed denial of service attacks in software-defined networks”, In 2018

IEEE 6th International Conference on Future Internet of Things and Cloud

(FiCloud), pp. 436-443, 2018 August 6, IEEE.

[50] M.J. Schwartz, “Bank of Spain Hit by DDoS Attack”, 2018 August 28.

[51] S. Shin, P. Porras, V.Yeneswaran, M. Fong, G. Gu, M. Tyson, “Fresco:

Modular composable security services for software-defined networks”. In

20th Annual Network & Distributed System Security Symposium, 2013

February 26, Ndss.

98

[52] V.A. Siris, F. Papagalou, “Application of anomaly detection algorithms

for detecting SYN flooding attacks”, IEEE Global Telecommunications

Conference, 4, pp. 2050–2054, 2004.

[53] R.M. Thomas, D. James, “DDOS detection and denial using third party

application in SDN”, In 2017 International Conference on Energy,

Communication, Data Analytics and Soft Computing (ICECDS), pp. 3892-

3897, 2017 August 1, IEEE.

[54] T.V. Tran, H. Ahn, “Challenges of and solution to the control load of stateful

firewall in software-defined networks”, Computer Standards & Interfaces,

54, pp. 293-304.

[55] C.F. Tsai, Y.F. Hsu, C.Y. Lin, W.Y. Lin, “Intrusion detection by machine

learning: A review”, expert systems with applications, 2009 December

1,36(10), pp. 11994-2000.

[56] T. Ubale, A.K. Jain, “SRL: An TCP SYN FLOOD DDoS Mitigation

Approach in Software-Defined Networks”, In 2018 Second International

Conference on Electronics, Communication and Aerospace Technology

(ICECA), pp. 956-962, 2018 March 29, IEEE.

[57] V. Varadharajan, K. Karmakar, U. Tupakula, M. Hitchens, “A policy-based

security architecture for software-defined networks”, IEEE Transactions on

Information Forensics and Security, 14(4), pp. 897-912, 2018 August 31.

[58] A.N. Viet, L.P. Van, H.A. Minh, H.D. Xuan, N.P. Ngoc, T.N. Huu,

“Mitigating HTTP GET flooding attacks in SDN using NetFPGA-based

OpenFlow switch”, In 2017 14th International Conference on Electrical

Engineering/Electronics, Computer, Telecommunications and Information

Technology (ECTI-CON), pp. 660-663, 2017 June 27, IEEE.

[59] J. Wang, R. Wen, J. Li, F. Yan, B. Zhao, F. Yu, “Detecting and mitigating

target link-flooding attacks using sdn”, IEEE Transactions on Dependable

and Secure Computing, 2018 April 2.

[60] R. Wang, Z. Jia, L. Ju, “An entropy-based distributed DDoS detection

mechanism in software-defined networking”, In 2015 IEEE

Trustcom/BigDataSE/ISPA, 1, pp. 310-317, 2015 August 20, IEEE.

[61] Waqas, “Website security firm Sucuri hit by large scale volumetric DDoS

attacks”, 2018 April 13.

99

[62] H.C. Wei, Y.H. Tung, C.M. Yu, “Counteracting UDP flooding attacks in

SDN”, In 2016 IEEE NetSoft Conference and Workshops (NetSoft), pp. 367-

371, 2016 June 6, IEEE.

[63] T. Xing, D. Huang, L. Xu, C. Chung, P. Khatkar. “Snortflow: A openflow-

based intrusion prevention system in cloud environment”, In 2013 second

GENI research and educational experiment workshop, pp. 89-92, 2013

March 20, IEEE.

[64] J. Zheng, Q. Li, G. Gu, J. Cao, D.K. Yau, J. Wu, “Realtime DDoS defense

using COTS SDN switches via adaptive correlation analysis”, IEEE

Transactions on Information Forensics and Security, 13(7), pp. 1838-1853,

2018 February 12.

[65] “OpenFlow Switch Specification (Version1.3.0). Open Networking

Foundation ONF), Technical Specification.” https://www.opennetworking

.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/

openflow-spec-v1.3.0.pdf.

[66] “OpenFlow. Open Networking Foundation (ONF)”, https://www.opennet-

working.org/, accessed on 2014 November 13.

[67] Mininet [Online]. Available from: http://mininet.org.

[68] GNU Wget 1.18 Manual [online]. Available from: https://www.gnu.org/soft-

ware/wget/manual/wget.html.

[69] Tcpdump [online]. Available from: https://www.tcpdump.org/manpages /tcp-

dump.1.html.

[70] Hping3 Security Tool [online]. Available from: http://www.hping.org/hping3

.html.

[71] DITG Tool [Online]. Available from: http://www.grid.unina.it/software/ITG/.

[72] Traffic generation model, https://en.wikipedia.org/wiki/ Traffic _ generation

_model.

[73] “SDN architecture”, ONF TR-502, 2014 June 1.

[74] Polling-interval, TechLibrary, 2018 April 20.

[75] sFlow-RT, [Online]. Available from: https://www.inmon.com, 2014 May.

[76] ONOS [Online]. Available from: https://onosproject.org.

[77] ONF, “Software-defined networking: The new norm for networks,” ONF

White Paper, 2, pp. 2–6, 2012.

100

[78] Software-defined analytics, [Online]. Available from:

https://blog.sflow.com/2013/05/software-defined-analytics.html, 2013 May.

[79] Open Networking Foundation, “Principles and practices for securing

software-defined networks version 1.0”, 2015 January.

101

LIST OF ACRONYMS

ACL Access Control List

ACC Accuracy

ATA Adaptive Threshold Algorithm

ACR Ameriacs Cardroom

API Application Programming Interface

Abf Average of Bytes per flow

Adf Average of Duration per flow

CAIDA Center for Applied International Data Analysis (CAIDA)

CDP Cisco Discovery Protocol

COTS Commercial off-the-shelf

CI Confidence Interval

CUSUM Cumulative Sum

D-CPI Data-Controller Plane Interface

DL Deep Learning

DOS Denial of Service

DR Detection Rate

DDoS Distributed Denial of Service

D-ITG Distributed Internet Traffic Generator

DNS Domain Name Service

DHCP Dynamic Host Configuration Protocol

EWMA Exponentially Weighted Moving Average

EWMA Exponentially Weighted Moving Average

FAR False Alarm Rate

FN False Negative

102

FP False Positive

FTP File Transfer Protocol

GRE Generic Routing Encapsulation

GDP Growth of Different Ports

GSf Growth of Single-flows

IA Idle-timeout Adjustment

IDT Inter Departure Time

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IPS Intrusion Prevention System

LACP Link Aggregation Control Protocol

LLDP Link Layer Discovery Protocol

LFA Link-flooding Attack

LISP Locator/ID Separation Protocol

MATA Modified Adaptive Threshold Algorithm

MTD Moving Target Defense

NFV Network Function Virtualization

NIC Network Interface Card

NTP Network Time Protocol

NNTP New Network Transfer Protocol

NBI North Bound Interface

ONF Open Network Foundation

ONOS Open Network Operating System

OSPF Open Shortest Path First

OVS Open vSwitch

103

OVSDB Open vSwitch Database

PS Packet Size

PPf Percentage of Pair-flows

QC Quality Control

QoS Quality of Service

sFlow Sample Flow

SOM Self-Organizing Map

SPRT Sequential Probability Ratio Test

SMTP Simple Mail Transport Protocol

SNMP Simple Network Management Protocol

SD-IXP Software Defined-Internet Exchange Point

SDN Software-Defined Networking

SBI South Bound Interface

SPC Statistical Process Control

STT Stateless Transport Tunneling

SVM Support Vector Machine

TCP Transport Control Protocol

TLS Transport Layer Support

TN True Negative

TP True Positive

UDP Universal Datagram Protocol

VXLAN Virtual Extensible Local Area Network

VLAN Virtual Local Area Network

VM Virtual Machine

WWW World Wide Web

104

APPENDICES

APPENDIX A: FLOODING ATTACK DETECTION

The detection of flooding attack in this system is implemented by using the

sFlow-RT analyzer. Thus, the three main functions including in the analyzer is

detailed discussed in this section. All these functions are implemented in a script file

(i.e. metric.js) by using the JavaScript API and this script file is under the directory of

𝑠𝑓𝑙𝑜𝑤 − 𝑟𝑡/𝑎𝑝𝑝/𝑑𝑑𝑜𝑠𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛/𝑠𝑐𝑟𝑖𝑝𝑡𝑠/.

The functions included in the script file are: flow definition, flow handling,

and event handling.

1) Flow Definition

For getting the specific type of flow from each type of service, the set of flow

keys and filtering keys are defined for each service.

a. Collection of the number of SYN frames per second from the Web

flow with the flow name of "𝑡𝑐𝑝𝑓𝑙𝑜𝑤_𝑤𝑒𝑏𝑠𝑦𝑛"

b. Collection of the number of SYN frames per second from the Mail

flow with the flow name of "𝑡𝑐𝑝𝑓𝑙𝑜𝑤_𝑚𝑎𝑖𝑙𝑠𝑦𝑛"

1. setFlow('tcpflow_websyn',

2. keys:'macsource,macdestination,

3. ipsource,ipdestination,

4. tcpdestinationport,',

5. value:'frames',

6. filter:'tcpdestinationport=80&tcpflags=000000010'});

1. setFlow('tcpflow_mailsyn',

2. keys:'macsource,macdestination,

3. ipsource,ipdestination,

4. tcpdestinationport,',

5. value:'frames',

6. filter:'tcpdestinationport=25&tcpflags=000000010'});

105

c. Collection of the number of SYN frames per second from the FTP flow

with the flow name of "𝑡𝑐𝑝𝑓𝑙𝑜𝑤_𝑓𝑡𝑝𝑠𝑦𝑛"

d. Collection of the number of frames per second from the DNS flow

with the flow name of "𝑢𝑑𝑝𝑓𝑙𝑜𝑤_𝑑𝑛𝑠"

e. Collection of the number of frames per second from the NTP flow with

the flow name of "𝑢𝑑𝑝𝑓𝑙𝑜𝑤_𝑛𝑡𝑝"

f. Collection of the number of frames per second from the DHCP flow

with the flow name of "𝑢𝑑𝑝𝑓𝑙𝑜𝑤_𝑑ℎ𝑐𝑝"

1. setFlow('tcpflow_ftpsyn',

2. keys:'macsource,macdestination,

3. ipsource,ipdestination,

4. tcpdestinationport,',

5. value:'frames',

6. filter:'tcpdestinationport=20&tcpflags=000000010'});

1. setFlow(‘udpflow_dns',

2. keys:'macsource,macdestination,

3. ipsource,ipdestination,

4. udpdestinationport,',

5. value:'frames',

6. filter:‘udpdestinationport=53’});

1. setFlow(‘udpflow_ntp',

2. keys:'macsource,macdestination,

3. ipsource,ipdestination,

4. udpdestinationport,',

5. value:'frames',

6. filter:‘udpdestinationport=123’});

1. setFlow(‘udpflow_dhcp',

2. keys:'macsource,macdestination,

106

2) Flow Handling

a. Initialization

The value of the baseline and threshold for each service is

initialized according to the result produced from the observation of

baseline in the Table 5.18 in section 5.2.2.2. Moreover, the number of

previous frames is also initialized as zero.

i. Initial baseline value for each service

ii. Initial threshold value for each service

iii. Initial previous frame value for each service

1. var baseline_mail = 5.0;

2. var baseline_web = 5.0;

3. var baseline_ftp = 5.0;

4. var baseline_dhcp = 77.0;

5. var baseline_dns = 9.0;

6. var baseline_ntp = 65.0;

1. var threshold_web = 5.0;

2. var threshold_ftp = 5.0;

3. var threshold_mail = 5.0;

4. var threshold_dhcp = 77.0;

5. var threshold_dns = 9.0;

6. var threshold_ntp = 65.0;

1. var PFtminusone_web = 0.0;

2. var PFtminusone_ftp = 0.0;

3. var PFtminusone_mail = 0.0;

3. ipsource,ipdestination,

4. udpdestinationport,',

5. value:'frames',

6. filter:‘udpdestinationport=67’});

107

b. Alternate service handling

After defining the initial value of the baseline, threshold, previous

traffic, and collecting the flow from the flow definition, the flow handling

function for each service is implemented under the

𝑠𝑒𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝐻𝑎𝑛𝑑𝑙𝑒𝑟 function.

Firstly, "𝑐𝑢𝑠𝑡𝑜𝑚𝑆𝑒𝑡𝑇𝑖𝑚𝑒𝑂𝑢𝑡" function is implemented for alternative

handling all services within one second.

1. function customSetTimeOut (app, ms) {

2. var now = (new Date()).getTime();

3. var future = now + ms;

4. var nownow = Date.now();

5. while((Date.now() <= future)) {

6. }

7. return app();

8. }

9. customSetTimeOut(function(){

10. ntp();

11. },0);

12. customSetTimeOut(function(){

13. dhcp();

14. },0);

15. customSetTimeOut(function(){

16. dns();

17. },0);

18. customSetTimeOut(function(){

19. web();

20. },0);

4. var PFtminusone_dns = 0.0;

4. var PFtminusone_dhcp = 0.0;

5. var PFtminusone_ntp = 0.0;

108

The invoked function of each service is implemented according to

the algorithm 4.1 as described in section 4.1.1.2. It consists of threshold

comparing, and new threshold calculation for the next second.

i. NTP service handling function

ii. DHCP service handling function

1. function ntp(){

2. setThreshold(‘ntp_abnormal',

3. {metric:‘udpflow_ntp', value:threshold_ntp,

4. byFlow:true, timeout:1});

5. udpCount_ntp = Count('udpflow_ntp');

6. CF_ntp = CalFramePerSec(udpCount_ntp);

7. PFt_ntp = ewma(CF_ntp, PFtminusone_ntp,

7. alpha_critical);

8. threshold_ntp_new = ((percentage + 1) * PFt_ntp) +

9. baseline_ntp;

10. PFtminusone_ntp = PFt_ntp;

11. threshold_ntp = threshold_ntp_new;

12. return;

13. }

14.

1. function dhcp(){

2. setThreshold(‘dhcp_abnormal',

3. {metric:‘udpflow_dhcp', value:threshold_dhcp,

4. byFlow:true, timeout:1});

21. customSetTimeOut(function(){

21. ftp();

22. },0);

23. customSetTimeOut(function(){

24. mail();

25. },0);

109

iii. DNS service handling function

iv. Web service handling function

1. function dns(){

2. setThreshold(‘dns_abnormal',

3. {metric:‘udpflow_dns', value:threshold_dns,

4. byFlow:true, timeout:1});

5. udpCount_dns = Count(‘udpflow_dns');

6. CF_dns = CalFramePerSec(udpCount_dns);

7. PFt_dns = ewma(CF_dns, PFtminusone_dns,

8. alpha_critical);

9. threshold_dns_new = ((percentage + 1) * PFt_dns) +

10. baseline_dns;

11. PFtminusone_dns = PFt_dns;

12. threshold_dns = threshold_dns_new;

13. return;

14. }

1. function web(){

2. setThreshold('web_abnormal',

5, udpCount_dhcp = Count('udpflow_dhcp');

5. CF_dhcp = CalFramePerSec(udpCount_dhcp);

6. PFt_dhcp = ewma(CF_dhcp, PFtminusone_dhcp,

7. alpha_critical);

 threshold_dhcp_new = ((percentage + 1) * PFt_dhcp)

8. + baseline_dhcp;

9. PFtminusone_dhcp = PFt_dhcp;

10. threshold_dhcp = threshold_dhcp_new;

11. return;

12. }

110

v. FTP service handling function

1. function ftp(){

2. setThreshold(‘ftp_abnormal',

3. {metric:'tcpflow_ftpsyn', value:threshold_ftp,

4. byFlow:true, timeout:1});

5. tcpCount_ftpsyn = Count('tcpflow_ftpsyn');

6. CF_ftpsyn = CalFramePerSec(tcpCount_ftpsyn);

7. PFt_ftp = ewma(CF_ftpsyn, PFtminusone_ftp,

8. alpha_critical);

9. threshold_ftp_new = ((percentage + 1) * PFt_ftp) +

10. baseline_ftp;

11. PFtminusone_ftp = PFt_ftp;

12. threshold_ftp = threshold_ftp_new;

13. return;

14. }

3. {metric:'tcpflow_websyn', value:threshold_web,

3. byFlow:true, timeout:1});

4. tcpCount_websyn = Count('tcpflow_websyn');

5. CF_websyn = CalFramePerSec(tcpCount_websyn);

6. PFt_web = ewma(CF_websyn, PFtminusone_web,

7. alpha_critical);

8. threshold_web_new = ((percentage + 1) * PFt_web) +

9. baseline_web;

10. PFtminusone_web = PFt_web;

11. threshold_web = threshold_web_new;

12. return;

13. }

111

vi. Mail service handling function

3) Event Handling

According to the threshold violation result produced from the

𝑠𝑒𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 function which compares the incoming traffic with the

threshold, the 𝑠𝑒𝑡𝐸𝑣𝑒𝑛𝑡𝐻𝑎𝑛𝑑𝑙𝑒𝑟 function produces the respective abnormal

event information for each type of service.

1. function mail(){

2. setThreshold(‘mail_abnormal',

3. {metric:'tcpflow_mailsyn', value:threshold_mail,

4. byFlow:true, timeout:1});

5. tcpCount_mailsyn = Count('tcpflow_mailsyn');

6. CF_mailsyn = CalFramePerSec(tcpCount_mailsyn);

7. PFt_mail = ewma(CF_mailsyn, PFtminusone_mail,

8. alpha_critical);

9. threshold_mail_new = ((percentage + 1) * PFt_mail) +

10. baseline_mail;

11. PFtminusone_mail = PFt_mail;

12. threshold_mail = threshold_mail_new;

13. return;

14. }

1. setEventHandler(function(evt) {

2. if((evt.thresholdID == 'web_abnormal') ||

3. (evt.thresholdID == 'ftp_abnormal') ||

4. (evt.thresholdID == 'mail_abnormal') ||

5. (evt.thresholdID == 'dns_abnormal') ||

6. (evt.thresholdID == ‘dhcp_abnormal') ||

7. (evt.thresholdID == 'ntp_abnormal'))

8. logInfo(evt.flowKey+" "+evt.value+" "+

9. evt.thresholdID);

10. },['web_abnormal','ftp_abnormal','mail_abnormal',

'dns_abnormal',‘dhcp_abnormal‘,'ntp_abnormal']);

112

APPENDIX B: FLOODING ATTACK MITIGATION

Flooding attack mitigation is implemented in the 𝑑𝑑𝑜𝑠𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 application

running in ONOS controller with the function of regular taking event information,

tracing back the attack source and installation of drop flow rule.

1) Getting event information from sFlow

The event information from the sFlow analyzer is periodically taken

from the 𝑑𝑑𝑜𝑠𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 in ONOS controller by using the URL: “ℎ𝑡𝑡𝑝://

𝑠𝐹𝑙𝑜𝑤𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑟𝐼𝑃: 8008/𝑒𝑣𝑒𝑛𝑡𝑠/𝑗𝑠𝑜𝑛”.

2) Finding the source switch connected to the attacker host

According to the source-based defense mechanism, the source switch

connected to the attacker host is needed to find for installing drop flow rule

into it. Thus, the 𝑑𝑑𝑜𝑠𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 application extracts the source MAC address

of the attacker host from the event information and then finds the switch’s ID

connected with it.

1. if (jsonText.contains("flowKey")) {

2. String key = "";

3. Double value = 0.0;

4. long timestamp=0;

5. long timestampNext=0, difftimestamp=0, initialdiffstable=0;

6. JSONArray arrayObj = new JSONArray(jsonText);

7. for(int i=0;i<arrayObj.length();i++)

8. {

9. JSONObject obj = arrayObj.getJSONObject(i);

10. timestamp=obj.getLong("timestamp");

11. key = obj.getString("flowKey");

12. String[] data = key.split(",");

13. Boolean match=false;

14. if (match==false && timestamp>previousTimestamp) {

15. String srcMac = data[0];

113

3) Checking the drop flow rule already installed for the current event

In order to install drop flow rule effectively, the received events are

checked whether it is new or not. If the new abnormal event information is

received, the temporal drop flow rule will be installed to drop the abnormal

frames from that flow. For the event that has been entered into this system and

receive again after the expiration of its drop flow rule, the permanent drop

flow rules are installed for this type of event.

1. IpAddress srcIpAddress = IpAddress.valueOf(data[2]);

2. IpAddress dstIpAddress = IpAddress.valueOf(data[3]);

3. SrcDstIpPair newIpPair = new SrcDstIpPair(srcIpAddress,

dstIpAddress);

16. String delimiter = ":";

17. String Mac1 = srcMac.substring(0, 2);

18. String Mac2 = srcMac.substring(2, 4);

19. String Mac3 = srcMac.substring(4, 6);

20. String Mac4 = srcMac.substring(6, 8);

21. String Mac5 = srcMac.substring(8, 10);

22. String Mac6 = srcMac.substring(10, srcMac.length());

23. String completeStringMac =

Mac1.concat(delimiter).concat(Mac2).concat(delimiter).concat(Mac3).

concat(delimiter).concat(Mac4).concat(delimiter).concat(Mac5).concat

(delimiter).concat(Mac6);

24. MacAddress srcMacAddress =

MacAddress.valueOf(completeStringMac);

25. HostId srcHostId = HostId.hostId(srcMacAddress);

26. Host srcHost = hostService.getHost(srcHostId);

27. DeviceId sourceDeviceId = srcHost.location().deviceId();

114

4. boolean found = false;

5. if (ipPairs.size() != 0) {

6. for (SrcDstIpPair st : ipPairs){

7. int p = ipPairs.indexOf(newIpPair);

8. if (st.equals(newIpPair)) {

9. if(p != -1){

10. found = true;

11. }

12. }

13. else {

14. found = false;

15. }

16. }

17. }

18. else {

19. log.info("Database is empty");

20. }

21. if(found == false) {

22. ipPairs.addIfAbsent(newIpPair);

23. installDropRuleT(sourceDeviceId, srcIpAddress,

dstIpAddress);

24. ruleInstallTime = timestamp;

25. return;

26. }

27. else {

28. timestampNext = obj.getLong("timestamp");

29. difftimestamp = timestampNext - ruleInstallTime;

30. if (initialdiffstable != difftimestamp) {

31. if (difftimestamp > 10000) {

32. boolean foundExist = false;

33. if (ipPairs.size() != 0) {

115

34. for (SrcDstIpPair st : ipPairExist){

35. int p = ipPairExist.indexOf(newIpPair);

36. if (st.equals(newIpPair)) {

37. if(p != -1){

38. foundExist = true;

39. }

40. }

41. else {

42. foundExist = false;

43. }

44. }

45. }

46. else {

47. // log.info("Database is empty");

48. }

49. if(foundExist == false) {

50. ipPairExist.addIfAbsent(newIpPair);

51. installDropRuleP(sourceDeviceId, srcIpAddress,

dstIpAddress);

52. ruleInstallTime = timestamp;

53. return;

54. } else return;

55. }

56. initialdiffstable = difftimestamp;

57. }else return;

58. }

59. } else

60. {

61. log.info("It is normal flow");

62. return;

63. }

116

4) Installation of flow rule with drop action

Drop flow rule is installed by firstly define the source and destination

IP for discarding the frames from the flow where is it incoming from and

forwarding to. Then, the 𝐷𝑒𝑣𝑖𝑐𝑒𝐼𝐷 is defined for the switch in which the drop

flow rule to be installed and the 𝑎𝑐𝑡𝑖𝑜𝑛 of the flow rule. Moreover, the flow

rule can be installed permanently or temporarily. For temporal drop flow rule,

the timeout value is needed to define when the installed drop flow rule is

expired after any frame does not pass through the flow rule as shown in the

function name of 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝐷𝑟𝑜𝑝𝑅𝑢𝑙𝑒𝑇 with predefined timeout value for 60

seconds.

a. Temporal drop flow rule

1. private void installDropRuleT(DeviceId deviceId, IpAddress src,

IpAddress dst) {

2. TrafficSelector.Builder selectorBuilder =

DefaultTrafficSelector.builder();

3. IpPrefix srcIpPrefix = src.toIpPrefix();

4. IpPrefix dstIpPrefix = dst.toIpPrefix();

5. selectorBuilder.matchEthType(Ethernet.TYPE_IPV4)

6. .matchIPSrc(srcIpPrefix)

7. .matchIPDst(dstIpPrefix);

8. TrafficTreatment drop =

DefaultTrafficTreatment.builder().drop().build();

9. flowObjectiveService.forward(deviceId,

DefaultForwardingObjective.builder().fromApp(appId)

10. .withSelector(selectorBuilder.build())

11. .withTreatment(drop)

12. .withFlag(ForwardingObjective.Flag.VERSATILE)

13. .withPriority(40001)

14. .makeTemporary(60)

15. .add());

16. }

117

b. Permanent drop flow rule

1. private void installDropRuleP(DeviceId deviceId, IpAddress src,

IpAddress dst) {

2. TrafficSelector.Builder selectorBuilder =

DefaultTrafficSelector.builder();

3. IpPrefix srcIpPrefix = src.toIpPrefix();

4. IpPrefix dstIpPrefix = dst.toIpPrefix();

5. selectorBuilder.matchEthType(Ethernet.TYPE_IPV4)

6. .matchIPSrc(srcIpPrefix)

7. .matchIPDst(dstIpPrefix);

8. TrafficTreatment drop =

DefaultTrafficTreatment.builder().drop().build();

9. flowObjectiveService.forward(deviceId,

DefaultForwardingObjective.builder().fromApp(appId)

10. .withSelector(selectorBuilder.build())

11. .withTreatment(drop)

12. .withFlag(ForwardingObjective.Flag.VERSATILE)

13. .withPriority(40001)

14. .makePermanent()

15. .add());

16. }

	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF EQUATIONS
	INTRODUCTION
	1.1 Problem Statement
	1.2 Motivation of the Research
	1.3 Objectives of the Research
	1.4 Focus of the Research
	1.5 Contributions of the Research
	1.6 Organization of the Research

	LITERATURE REVIEW
	2.1 DDoS Attack
	2.2 Limitation of Traditional Networking for Defending of DDoS Attack
	2.3 Software-Defined Network (SDN)
	2.4 Advantages of SDN over the Existing DDoS Defense Mechanism
	2.5 SDN-based DDoS Attack Detection
	2.5.1 Statistical Analysis
	2.5.1.1 Entropy
	2.5.1.2 Change Point Detection

	2.5.2 Machine Learning
	2.5.3 Traffic Pattern Analysis
	2.5.4 Connection Rate
	2.5.5 Integration of Traffic Monitoring Tool and OpenFlow

	2.6 SDN-based DDoS Attack Mitigation
	2.6.1 Drop Packet or Block Port
	2.6.1.1 Source-based Defense Mechanism
	2.6.1.2 Destination-based Defense Mechanism
	2.6.1.3 Hybrid Defense Mechanism

	2.6.2 Redirection
	2.6.3 Control Bandwidth
	2.6.4 Change Network Topology

	2.7 Chapter Summary

	BACKGROUND THEORY
	3.1 Software-Defined Networking
	3.1.1 Architecture of SDN
	3.1.1.1 OpenFlow Protocol
	3.1.1.2 Open vSwitch
	3.1.1.3 Controller (Open Network Operating System – ONOS)

	3.1.2 Flow Rule Installation in SDN
	3.1.2.1 Reactive Flow Instantiation
	3.1.2.2 Proactive Flow Instantiation
	3.1.2.3 Hybrid Flow Instantiation

	3.2 SDN-based DDoS Attack Detection Scheme
	3.2.1 Packet Statistic with sFlow-RT analyzer in SDN
	3.2.1.1 Sampling
	3.2.1.2 Polling

	3.2.2 Change Point Detection Algorithms
	3.2.2.1 Adaptive Threshold Algorithm (ATA)
	3.2.2.2 Modified Adaptive Threshold Algorithm (MATA)

	3.3 SDN-based DDoS Attack Mitigation Scheme
	3.4 Performance Evaluation in Network Security
	3.5. Chapter Summary

	FLOODING ATTACK DETECTION AND MITIGATION SYSTEM
	4.1 Architecture of Flooding Attack Detection and Mitigation System
	4.1.1 Detection Phase
	4.1.1.1 Flow Definition
	4.1.1.2 Flow Handling
	4.1.1.3 Event Handling

	4.1.2 Mitigation Phase
	4.1.2.1 MATA–based Mitigation
	4.1.2.2 ATA–based Mitigation

	4.2 Chapter Summary

	IMPLEMENTATION AND EVALUATION OF FLOODING ATTACK DETECTION AND MITIGATION
	5.1 Experimental Testbed Design
	5.2 Experimental Results
	5.2.1 Scenario 1: SYN Flooding Attack Detection and Mitigation
	5.2.1.1 Experimental Results for Scenario 1
	A. Adaptive Threshold vs Incoming SYN Frames
	B. Filtering Results
	C. Evaluation of Performance Parameters

	5.2.2 Scenario 2: Flooding Attacks Detection and Mitigation
	5.2.2.1 False Alarms Avoidance in ATA-based Detection
	5.2.2.2 False Alarms Avoidance in MATA-based Detection
	5.2.2.3 Experimental Results for Scenario 2
	A. Detection Results
	i. Comparative Results of Adaptive Threshold over Incoming Traffic
	ii. Comparative Results of Performance Parameters
	iii. Comparative Results of Incoming Traffic in sFlow Analyser and Arrival Traffic in Each Server
	iv. Comparisons of Performance over Various Attack Rates
	v. Comparisons of Performance over Various Monitoring Time and Attack Time

	B. Mitigation Results
	i. Filtering Results
	ii. Network Performance

	5.3 Chapter Summary

	CONCLUSION AND FUTURE WORKS
	6.1 Summary of Dissertation
	6.2 Advantages and Limitations
	6.3 Recommendations for Future Work

	AUTHOR’S PUBLICATIONS
	BIBLIOGRAPHY
	LIST OF ACRONYMS
	APPENDIX A: FLOODING ATTACK DETECTION
	APPENDIX B: FLOODING ATTACK MITIGATION
	1) Getting event information from sFlow
	2) Finding the source switch connected to the attacker host
	3) Checking the drop flow rule already installed for the current event
	4) Installation of flow rule with drop action

	Word Bookmarks
	OLE_LINK284
	OLE_LINK285
	OLE_LINK38
	OLE_LINK39
	bau005
	bau010
	bau015
	bau020
	bau025

